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Abstract
Introduction Accurate grading of cerebral glioma using con-
ventional structural imaging techniques remains challenging
due to the relatively poor sensitivity and specificity of these
methods. The purpose of this study was to evaluate the relative
sensitivity and specificity of structural magnetic resonance
imaging and MR measurements of perfusion, diffusion, and
whole-brain spectroscopic parameters for glioma grading.

Methods Fifty-six patients with radiologically suspected un-
treated glioma were studied with T1- and T2-weighted MR
imaging, dynamic contrast-enhanced MR imaging, diffusion
tensor imaging, and volumetric whole-brain MR spectro-
scopic imaging. Receiver-operating characteristic analysis
was performed using the relative cerebral blood volume
(rCBV), apparent diffusion coefficient, fractional anisotro-
py, and multiple spectroscopic parameters to determine op-
timum thresholds for tumor grading and to obtain the
sensitivity, specificity, and positive and negative predictive
values for identifying high-grade gliomas. Logistic regres-
sion was performed to analyze all the parameters together.
Results The rCBV individually classified glioma as low and
high grade with a sensitivity and specificity of 100 and
88 %, respectively, based on a threshold value of 3.34. On
combining all parameters under consideration, the classifi-
cation was achieved with 2 % error and sensitivity and
specificity of 100 and 96 %, respectively.
Conclusion Individually, CBV measurement provides the
greatest diagnostic performance for predicting glioma grade;
however, the most accurate classification can be achieved by
combining all of the imaging parameters.
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Introduction

Gliomas are the most common primary cerebral neoplasm
and the major cause of morbidity and mortality in adults,
with malignancy that ranges from low grade to anaplastic
and glioblastoma multiforme (GBM). Histopathology is the
gold standard for grading of glioma although suffers from
inherent sampling error associated with stereotactic biopsy
and is unable to evaluate residual tumor tissue after
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cytoreductive surgery [1]. Magnetic resonance imaging
(MRI) has played a significant role in noninvasive detection
and classification of gliomas; however, the conventional
MRI methods mostly fail to discriminate GBMs from soli-
tary metastases [2, 3] or other glioma grades [4], and for this
reason, MR measures reflecting structure and tissue func-
tion, such as in vivo MR spectroscopy (MRS), diffusion
tensor imaging (DTI), and dynamic susceptibility contrast as
well as dynamic contrast-enhanced (DCE) perfusion-
weighted imaging (PWI) have been investigated for glioma
classification [4–8].

Proton MR spectroscopy (1H-MRS) enables evaluation
of brain metabolites such as N-acetylaspartate (NAA), total
choline (Cho), and total creatine (Cre). Additional signals
include lactate, which becomes visible in the presence of
anaerobic metabolism, and lipids, which may be observed in
regions of cellular breakdown caused by necrosis. Typical
characteristics of elevated Cho, decreased NAA, and the
presence of lipids and lactate have been shown to be useful
in tumor grading, although reports indicate a range of spec-
ificity and sensitivity levels [1, 9–11]. While many of these
previous studies were performed using single-voxel spec-
troscopy or multi-voxel single-slice spectroscopic imaging
(MRSI) with point-resolved spectroscopy (PRESS) volume
selection, there are no previous reports that have used a
more recently developed method of whole-brain volumetric
MRSI, and there have been only a limited number of studies
carried out at the increasingly available field strength of 3 T.
A secondary aim of this study is to evaluate the potential
advantage of obtaining metabolite maps that cover a larger
volume of the cerebrum.

DTI is sensitive to the rate and direction of diffusion of
water within the tissue. Studies have shown that DTI reveals
larger peritumoral abnormalities in gliomas, which are not
apparent on conventional MRI, and that fractional anisotro-
py (FA) [12–14] and apparent diffusion coefficient (ADC)
have been shown to distinguish high-grade from low-grade
tumors [5]. DCE-MRI measures a composite of tumor per-
fusion, vessel permeability, and extravascular-extracellular
space volume, volume transfer coefficient (ktrans), rate trans-
fer constant between the extracellular extravascular space
and the plasma (kep) leakage (ve), and plasma volume (vp).
These pharmacokinetic indices of DCE-MRI provide quan-
titative measurement of the integrity of the blood–brain
barrier and of tissue perfusion. Several studies have
shown that DCE can characterize different grades of
glioma based on these hemodynamic and pharmacoki-
netic indices [7, 15, 16].

Information gained from these multiparametric imaging
techniques is largely complementary, and combinations of
these methods have been investigated for glioma classifica-
tion [4, 9, 10], and their efficacy was characterized in terms
of the sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV). Studies have
shown that relative cerebral blood volume (rCBV) measure-
ments and metabolite ratios both individually and in com-
bination can increase the sensitivity and PPV when
compared with conventional MRI alone in determining gli-
oma grade [1, 4]. In this study, our primary aims were to
evaluate sensitivity, specificity, PPV, and NPV of perfusion
MRI, whole-brain MRSI, and DTI for glioma grading and to
determine which technique or combination of techniques is
of value for classification of low- from high-grade glioma.

Materials and methods

Eighty-seven treatment-naïve patients (61 men and 26 wom-
en, aged 14–69 years) who had received a preliminary
diagnosis from an experienced radiologist of intracranial
space-occupying lesion on CT/MRI were included in this
study. Thirteen were subsequently excluded as they were
confirmed as non-gliomas on histopathology. Five studies
were dropped due to motion in the data set; seven, because
of low quality of spectral data in the region of the tumor; and
another six were excluded due to incomplete study data
where either the perfusion imaging, T2-weighted MRI, or
the DTI was not available. Hence, a total of 56 patients were
considered for analysis. The institutional ethics committee
and the research committee approved the study protocol,
and informed consent was obtained from the patients or
their care providers.

MR imaging

Subjects underwent an hour-long MR protocol that included
conventional MRI, whole-brain MRSI, DTI, and DCE-MRI
on a 3-T Signa HDxt MRI scanner (General Electric, Mil-
waukee, WI) using a 12-channel head coil. Conventional
imaging included T2-weighted fast spin echo (FSE) with
echo time (TE)/repetition time (TR) of 101.8/3,500 ms, a
signal average (NEX) of 1, field of view (FOV) of 260×
260 mm2, and 3 mm slice thickness without any interslice
gap and a T1-weighted image fast spoiled gradient-recalled
(FSPGR) echo with TE/TR/NEX = 3.01/8.02 ms/1, FOVof
256×256 mm2, and 1 mm slice thickness.

MRSI data were obtained using a volumetric spin-echo
MRSI sequence with echo-planar readout and TR/TE =
1,710/70 ms, FOV = 280×280×180 mm3, 100 [read]×50
[phase]×18 [slice] spatial samples over a 135-mm slab, and
acquisition time of 26 min. This included frequency-
selective water suppression and inversion recovery nulling
of the lipid signal with inversion time = 198 ms. This
sequence included both a spin-echo excitation for the me-
tabolite signal and a low flip-angle gradient-echo excitation
for a water reference MRSI signal, which was acquired in an
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interleaved fashion. The FSPGR BRAVO and MRSI acquis-
itions were performed at the same angulation, with the slice
or slab orientations of all acquisitions parallel to the anterior
commissure–posterior commissure (AC-PC) plane, or angu-
lated at +15° from the AC-PC, which was found to facilitate
improved magnetic field homogeneity over a larger volume
of the cerebrum.

MRSI data were processed using the Metabolite Imaging
and Data Analysis System package [17]. Metabolite image
reconstruction included spatial smoothing and interpolation
to 64×64×32 voxels, with a resultant voxel volume of
approximately 1 mL. The automated spectral fitting of rel-
ative metabolite concentration resulted in maps for NAA,
Cre, Cho, and lactate, although due to the spectral overlap
with lipid signals that cannot be fully resolved by the spec-
tral analysis procedure this, latter result is termed lactate +
lipid (LL). Additional maps were obtained for the metabo-
lite ratios and measures of spectral quality, including spec-
tral linewidth and Cramer–Rao bounds. Individual
metabolite values are reported in institutional units, and
metabolite ratio values indicate the relative concentrations
and not the widely reported area under the spectral peak.
The processing steps included manual creation of a mask
that delineated the tumor and surrounding edema; calcula-
tion of the MRSI voxel tissue content based on a four-
compartment tissue segmentation of the high-resolution
T1-weighted MRI into gray and white matter, cerebrospinal
fluid, and an “other” tissue category; and normalization of
the fitted metabolite signals to institutional units using the
water reference MRSI. The signal normalization assumed a
fixed water content and T1 for each tissue type to derive the
100 % water equivalent signal; however, because the water
content and T1 in the tumor region is unknown, these were
estimated by deriving a bias field correction map that min-
imized image intensity variations over the tumor region, and
the resultant image used for intensity scaling was smoothed
to minimize the effect of local signal variations.

DTI data were acquired using a dual spin-echo single-
shot echo-planar sequence with ramp sampling, TR/TE/
FOV/NEX/slice thickness/interslice gap = 10 s/100
ms/240 mm/1/3 mm/0, 46 slices, image matrix = 256×
256, and diffusion-weighting b-factor of 1,000 s/mm2 ap-
plied in 12 directions in addition to the reference measure-
ment with b=0 s/mm2. DTI data were processed using in-
house developed software to obtain eigenvalues (λ1, λ2, and
λ3) and three orthonormal eigenvectors (e1, e2, and e3) [18].
The tensor field data were then used to compute the DTI
metrics such as ADC and FA for each voxel [18].

DCE-MRI was performed using a three-dimensional
spoiled gradient-recalled (SPGR) echo sequence (TR/TE/
flip angle/NEX/slice thickness/FOV/matrix size =
5.0 ms/2.1 ms/10°/0.7/6 mm/240×240 mm/128×128 mm,
number of phases 32). At the start of the fourth acquisition,

Gd-DTPA-BMA (OmniScan; GE Healthcare, Piscataway,
NJ) was administered through a power injector (Mallinck-
rodt OptiStar LE) at 5 mL/s and a dose of 0.2 mmol/kg body
weight, followed by a 30-mL saline flush. A series of 384
images over 32 time points for 12 slices were acquired
(temporal resolution 5.65 s). Before three-dimensional
SPGR, two inversion recovery FSE images (TR/TE/NEX/-
slice thickness/FOV/matrix size = 940/8 ms/0.75/6
mm/240×240 mm2/128×128 mm) with inversion times of
800 and 1,600 ms were acquired for the same slice position
to quantify the voxel-wise tissue longitudinal relaxation
time, T10. Voxel-wise tissue longitudinal relaxation time,
T10, was calculated from the two inversion recovery sequen-
ces indicated above [7]. The absolute tissue T10 value was
used to generate a concentration time curve from a signal
intensity–time curve obtained from 3D FSPGR sequence
using in-house developed Java-based software [7]. Quanti-
tative analysis of the concentration–time curve was per-
formed to calculate the CBV and a corrected CBV map
generated by removing the contrast agent leakage effect
due to the disrupted blood–brain barrier [18, 19]. The phar-
macokinetic model was implemented for calculation of ktrans

(in minute), kep (in minute), ve, and vp [7]. The relative CBV
was then obtained by dividing the mean value of CBV in
specified region of interest (ROI) by the value obtained from
a ROI placed on the normal contralateral side of the brain.

A post-contrast T1-weighted image (FSPGR BRAVO)
with TE/TR/NEX = 2.98/7.79 ms/1 was acquired with
FOV of 256×256 mm2 and 1 mm slice thickness after the
acquisition of the perfusion MR imaging data. The metabo-
lite maps, DTI metrics, and DCE-derived CBV map were
co-registered. Image values were then obtained for all image
types according to the following methods. For the metabo-
lite maps, ROIs were placed within the lesion corresponding
to the maximal Cho signal and minimal NAA + Cre and
from contralateral normal-appearing white matter (NAWM).
Mean values of NAA, Cre, Cho, and LL in the tumor and
Cre and Cho in the NAWM (CreNormal and ChoNormal, re-
spectively) were recorded from 12 interpolated voxels at
each ROI, corresponding to a tissue volume of approximate-
ly 2 mL. The values of CreTumor/CreNormal and ChoTumor/
ChoNormal ratio were then calculated for each tumor ROI.
Initial evaluation indicated that all studies included voxels
with zero NAA; therefore, results were not obtained for the
widely reported maximum Cho/NAA ratio. If LL was pres-
ent, it was confirmed that this was also present in the tumor
ROIs. Values were accepted only if the fitted spectral line-
width was less than 13 Hz, and the Cramer–Rao bound for
any one of NAA, Cre, and Cho was under 10 %. Since the
initial analysis indicated that regions of zero metabolite
signal were observed for both necrotic tissue regions and
cystic tumor regions, which could be readily distinguished
based on the T2 image, an additional image metric obtained

Neuroradiology (2013) 55:603–613 605



from the intensity of the T2-weighted MRI relative to the
value in contralateral white matter was also included. For
the DTI metrics (FA and ADC), mean values were obtained
for ROIs corresponding to regions with high FA and low
MD values, and for the DCE-derived rCBV, ktrans, kep, ve,
and vp maps, the values were obtained for ROI
corresponding to maximum corrected CBV. For each DTI-
derived metrices and DCE-derived CBV maps, the values
were recorded from 12 interpolated voxels at each ROI
corresponding to a tissue volume of approximately 2 mL.
Five ROIs were placed at five different slices of tumor, and
the region showing the worst values was considered. ROIs
for spectral maps were placed at different locations com-
pared those of perfusion and diffusion maps as the region
with high choline and minimal NAA + Cre did not always
correspond to the region with high CBV, high FA, and low
MD, and vice versa.

In addition to obtaining metabolite values normalized
using tissue water, these values were also obtained using
normalization with contralateral values obtained from
normal-appearing white matter. Similarly, contralateral
white matter CBV was obtained for determination of rCBV.

An experienced radiologist who was blinded to the MR
perfusion, DTI, and MR spectroscopic results reviewed the
conventional MR images and graded each tumor according
to the two-tier imaging grading system: low- versus high-
grade gliomas. The grading was based on the following:
tissue contrast enhancement, border definition, mass effect,
signal intensity heterogeneity, hemorrhage, necrosis, degree
of edema, involvement of the corpus callosum, and tumor
crossing the midline [1].

To evaluate the potential for whole-brain MRSI and the
multiplane DCE sequence to sample lesions throughout the
cerebrum, the number of studies for which the MRI-
observed tumor volume was considered to be well, partially,
or inadequately sampled by the MRSI or DCE study was
recorded. For full sampling, this evaluation required that
>75 % of the lesion volume, as indicated by the post-
contrast T1- and T2-weighted images, was obtained with a
sufficiently good spectral linewidth based on visual
analysis.

Statistical analysis

Sample size estimation

The sensitivity and specificity of the imaging results were
calculated using receiver-operating characteristic (ROC)
analysis. To estimate the sample size required for this anal-
ysis, it was assumed that the area under the ROC curve
under the null hypothesis will be 0.8; under the alternate
hypothesis, it will be 0.99; and that the ratio between the
standard deviation of responses in the positive and negative

groups was 1. For 90 % power and a 0.05 level of signifi-
cance, the minimum sample size required for positive and
negative responses was 16 each. The data were assumed as
discrete responses having binary outcome (as high or low
grade).

ROC curve analyses were first used to determine the
cutoff values of individual imaging metrics, with the histo-
logically confirmed grades taken as a gold standard. Opti-
mal threshold values were obtained by (1) minimizing the
observed number of tumors misclassified (C2 error = frac-
tion of misclassified tumors) and (2) maximizing the aver-
age of the observed sensitivity and specificity (C1 error =
1 − (sensitivity +specificity)/2). Based on these, sensitivity,
specificity, PPV, and NPV were calculated for characteriza-
tion of gliomas into high and low grade. To obtain the
sensitivity, specificity, PPV, and NPV for combination of
rCBV, metrices of diffusion tensor imaging, and spectral
maps, logistic regression was performed using forward like-
lihood ratio method based on threshold values obtained
from ROC curve analyses for each imaging measure in
glioma grading.

Results

Of 56 subjects included in the study, histopathology indi-
cated 32 with high-grade glioma (9 anaplastic astrocytoma
grade III, 3 anaplastic oligoastrocytoma grade III, and 20
glioblastoma multiforme grade IV) and 24 with low-grade
glioma (13 astrocytoma grade II, 7 oligodendroglioma grade
II, and 4 oligoastrocytoma grade II). Contrast enhancement
was seen in 35, 89, and 100 % of grades II, III, and IV
tumors, respectively. In Figs.1 and 2, there are example
images and spectra for a GBM where findings include the
absence of NAA (Fig. 1c) over much of the T2-hyperintense
region, which extends outside of the volume indicated by
the T1 contrast enhancement, together with reduced Cre and
strong increase of Cho. Increased LL, which was visually
attributed to be primarily a representative of lactate, can be
seen (Figs. 1e and 2b) within the central region. Results also
show decreased FA and locally increased CBV. This result
also demonstrates the ability of the whole-brain MRSI meth-
od to sample a wide volume of the brain, including the
cortical surface at the position of the tumor.

MRSI results of grade II astrocytoma (Fig. 3) demon-
strate an absence of NAA and reduced Cre, similar to the
previous example, together with a moderate increase of Cho
and a region with high lactate. The findings include in-
creased ADC and decreased FA and CBV that are confined
to the region indicated by altered T1 and T2 contrast.

Based on radiologist’s reading, conventional MRI could
discriminate low-grade glioma from high grade with sensi-
tivity, specificity, PPV, and NPV as 84, 67, 77, and 76 %,
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respectively, with minimum C1 and C2 error as 24 and
23 %, respectively. For parameters obtained from T2-
weighted FSE, DTI, DCE-MRI, and whole-brain MRSI,
threshold values were obtained separately for minimum C1
and C2 error and are shown in Tables 1, 2, 3, and 4. The best
performance for a single imaging measure was obtained for
rCBV, for which minimum C1 and C2 error was obtained
with a threshold value of 3.34 and provided sensitivity and
specificity of 100 and 88 %, respectively (Table 1). Since
oligodendrogliomas are known to influence the CBV val-
ues, we also analyzed the data by removing them. On
removal of seven pure oligodendrogliomas from low grade
and at cutoff value of 3.34 rCBV, we obtained sensitivity
and specificity of 100 % each for classification of glioma
grade. Oligoastrocytoma with 25 % of oligo component in
our analysis was considered to be astrocytoma.

The combination of spectral parameter, rCBV, FA, ADC,
and T2Tumor/T2Normal where ROIs were placed on region
with high choline resulted in sensitivity, specificity, PPV,

and NPV of 100, 88, 91, and 100 %, respectively, for
minimum C1 as well as C2 error. When ROIs were placed
on region with minimal NAA and creatine, the combination
of spectral parameter, rCBV, FA, ADC, and T2Tumor/T2Normal

provided sensitivity, specificity, PPV, and NPVof 100, 96, 97,
and 100 %, respectively, for minimum C1 as well as C2 error
(Table 5).

The MRSI data showed a considerable overlap of spectral
characteristics across all tumor grades, with 97 % of studies
having a region with no NAA signal and 68 % (58, 50, and
88 % for grades II, III, and IV, respectively), indicating the
presence of lactate, as confirmed by visual identification of
the lactate doublet in the spectra. Of 61 studies for
which MRSI data were suitable for evaluation, the ex-
tent to which the whole-brain MRSI acquisition sampled
the tumor volume with adequate quality indicated that
72 % of the studies provided >75 % coverage of the
tumor and 20 % of studies sampled between 25 and
75 % of the tumor volume.

Fig. 1 Example multiparametric results for a grade IV glioblastoma
multiforme in the right parietal region of a 48-year-old male subject.
Multi-slice axial images are shown that correspond to every second

slice of the volumetric MRSI study, at 11.2-mm spacing. Each column
shows results for a T2-weighted MRI, b post-contrast T1-weighted
MRI, c NAA, d Cre, e Cho, f LL, g ADC, h FA, and i CBV
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Discussion

The major finding of this study is that a combination of
parameters from DCE-MRI, DTI, and whole-brain MRSI
enables classification of gliomas into high and low grade
with accuracy near to the classification based on histopa-
thology. Results suggest that DCE-MRI-derived rCBV is

most efficient in the classification of high-grade glioma
from low grade as compared to DTI-derived metrices and
spectral maps obtained from whole-brain MRSI.

Several reports have demonstrated the advantages of
multiparametric MR measures for evaluation of gliomas at
1.5 and 3 T [9, 10, 14, 20]. Di Costanzo et al. [10] have
shown that multiparametric MR assessment of glioma,
based on 1H-MRSI, PWI, and diffusion-weighted imaging,
can discriminate high- from low-grade gliomas and infiltrat-
ing tumor from surrounding vasogenic edema or normal
tissues. Catalaa et al. [9] evaluated perfusion, diffusion,
and spectroscopy values in enhancing and non-enhancing
lesions for patients with newly diagnosed gliomas of differ-
ent grades to find increased cell density and increased vas-
cularity within enhancing lesions and increased cellularity in
non-enhancing region. However, these studies did not eval-
uate the ability to classify gliomas into low and high grade
using quantitative threshold values based on ROC analysis.
Analyses of single imaging measures as well as multipara-
metric combinations have been used for this purpose. For
studies carried out at 3 T, MRS had been evaluated for
grading of cerebral gliomas at different TE values [11],
and ROC analysis was conducted for glioma classification
using pharmacokinetic indices [16]. Combination of mean
FA and maximal FA in grading of preoperative non-
enhancing gliomas has been reported to discriminate low
and high grade with specificity of 92.3 % and sensitivity of
86.7 % [14]. DCE-MR and spectroscopic imaging were

Fig. 3 Example images and spectra at two slices of 35-year-old male
for a left insular grade II astrocytoma. Results are shown for a T2-
weighted MRI, b post-contrast T1-weighted MRI, c NAA, d Cre, e

Cho, f LL, g ADC, h FA, and i CBV. In k, sample spectra are shown,
corresponding to the number regions indicated in e and f, with spectral
assignments as shown in Fig. 2b

Fig. 2 Example spectra corresponding to the GBM study shown in
Fig. 1. The locations of the selected spectra are indicated on the post-
contrast T1 MRI (a) which has been integrated over ten 1-mm slices to
correspond to the slice thickness of the MRSI study. The spectra (b)
correspond to regions of 1 highest Cho, 2 smallest NAA + Cre, and 3
normal-appearing white matter
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combined to obtain specificity and sensitivity as 93.3 and
60.0 %, respectively, to discriminate high- and low-grade
glioma [1].

Zonari et al. [4] evaluated the combined role of single-
voxel MR spectroscopy, diffusion imaging, and echo-planar
perfusion imaging. They concluded that combination of
PWI and MRS with conventional MR imaging increases
the accuracy of the attribution of malignancy to glial neo-
plasms. However, the current study suggests that combina-
tion of all the parameters will enhance the accuracy towards
classification of glioma grade. Arvinda et al. [5] have clas-
sified gliomas using diffusion and perfusion imaging; how-
ever, they did not combine these techniques to classify high-
and low-grade gliomas. Hlaihel et al. [6] studied the predic-
tive value of multimodality MRI using conventional, perfu-
sion, and spectroscopy MR in anaplastic transformation of
low-grade oligodendrogliomas and concluded that MRS
should be recommended in the follow-up of low-grade
gliomas as they observed that choline/creatine ratio could
predict anaplastic transformation before perfusion abnor-
malities, with high positive predictive value of 83 %.

In the present study, conventional MRI was able to clas-
sify gliomas into low and high grade with a sensitivity and
specificity of 84 and 67 %, respectively, which is consistent
with the previous studies [1, 21]. Contrast enhancement was
seen in 35, 89, and 100 % of grades II, III, and IV tumors,
respectively, which is consistent with earlier studies
[22–24]. Among all the parameters considered, rCBV most
efficiently characterized the grades with high sensitivity and
specificity and minimal error, which can be due to better
resolution of perfusion data as compared to spectral maps
and inconsistent FA and ADC values for high- and low-
grade glioma. Previous studies have indicated that function-
al physiological parameters like CBV and other perfusion
indices have fared better than MR spectroscopy [1], which
gives insight into the tissue metabolism, and indices of DTI
[5], which reflect the cellular microenvironment. Several
studies have reported a robust correlation between micro-
vascular density and tumor grade [25], which supports the
association of rCBV with tumor grade. Additional consid-
erations of choice of imaging method include the lack of
standardization of MRS acquisition and quantification

methods, and variability of the measurements, leading to
decreased sensitivity and specificity relative to MR
perfusion.

In this study, rCBV cutoff value of 3.34 resulted in a
sensitivity and specificity of 100.0 and 88.0 %, respectively,
was observed, which is consistent with previous reports [5,
26]. However, Law et al. [1] reported a threshold value of
1.75, for a sensitivity, specificity, PPV, and NPV of 95.0,
57.5, 87.0, and 79.3 %, respectively. This difference in the
threshold value may be due to the larger variation in the
rCBV values for high-grade glioma and the technique used
for quantification of rCBV in the study of Law et al., which
resulted in the lower specificity as compared to the present
study. The separate analysis of the data after removal of
seven oligodendrogliomas improved the sensitivity and
specificity to 100 %, indicating that the presence of oligo-
dendrogliomas does influence the glioma grading. This is
probably due to the difference in the vascular profile of
these two different types of tumors and their inherent dense
network of branching capillaries which resembles to “chick-
en wire” pattern [14, 27].

Earlier study showed that kep and ve, together with rCBV,
classified 100 % of low-grade tumors and 89.1 % of high-
grade tumors correctly [7]. The ktrans and ve are shown to
discriminate high from low grade with good sensitivity and
specificity [16] similar to our results. However, the current
study suggests that the pharmacokinetic indices ktrans, kep,
ve, and vp are not as sensitive and specific in the classifica-
tion of glioma as rCBV since it provides with higher sensi-
tivity and specificity.

For regions with minimal NAA + Cre, the ratio of
T2 signal intensity to that of normal contralateral white
matter and creatine was also relatively effective for
classification of glioma, as compared to the other me-
tabolite maps obtained. ROIs placed on regions with
maximal Cho gave the ratio of the T2 MRI signal
intensity in the tumor to normal contralateral white
matter and ChoTumor/ChoNormal as the most effective
classifier. The combination of rCBV, FA, ADC, and
spectroscopic parameters was able to discriminate high
and low grade with only 6 and 5 % of C1 and C2 error,
respectively, when ROIs were placed in region with

Table 5 tCho, tCre, NAA, Cho/Cr, lactate, CreT/CreN, ChoT/ChoN, T2T/T2N, rCBV, FA, and ADC together for differentiating between low- and
high-grade gliomas

ROIs placed on region
with

Threshold based on minimum C1 error Errors Threshold based on minimum C2 error Errors

Sensitivity Specificity PPV NPV C1 C2 Sensitivity Specificity PPV NPV C1 C2

High choline 1.0 0.88 0.91 1 0.06 0.05 1.0 0.88 0.91 1 0.06 0.05

Low NAA and low
creatine

1.00 0.96 0.97 1 0.02 0.02 1.00 0.96 0.97 1 0.02 0.02
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maximum rCBV, FA, ADC, and choline. Combinations
of the same parameters obtained from ROIs placed in
regions with maximum rCBV, FA, ADC and minimal
NAA + Cre were able to discriminate high and low
grade with 2 % of C1 and C2 error and sensitivity
and specificity as 100 and 96 %, respectively. This
considerable improvement in discrimination between
grades is due to the complementary information provid-
ed from perfusion-weighted, diffusion-weighted, and
spectroscopic parameters, and this adds value to clinical
diagnosis for differentiating primary glioma.

This is the first study evaluating the whole-brain MRSI
method for tumor characterization. The availability of the
volumetric MRSI measurement with relatively good spatial
resolution provided sufficient coverage of the brain with
92 % of the studies analyzed considered to have sampled a
portion of the tumor volume considered sufficient to make a
ROI-based measurement. A potential benefit of the im-
proved spatial sampling and relatively good resolution over
conventional PRESS volume-selected MRSI methods is
improved accuracy for ROI selection. Nevertheless, the
diagnostic performance of the MRSI method used in this
study remains comparable to previous reports carried out at
1.5 T using two-dimensional PRESS volume-selected MRSI
[1] and reporting metabolite ratios. In comparison to the
study of Law et al. [1] for Cho/Cre, this study shows
comparable sensitivity and a small improvement in speci-
ficity. An additional observation is that the use of signal-
normalized individual metabolite values resulted in a diag-
nostic performance similar to that obtained from the
Cho/Cre or using normalization by the values in contralateral
while matter.

A new finding of this study is the potential of Cre as a
diagnostic marker. Although widely used as a concentration
standard, there is regional and individual variability in con-
centration [28], and it has been shown to be decreased in
tumors [29]; however, higher Cre values relative to NAWM
values were associated with shorter survival [30]. The
results of this study indicate that when ROIs were selected
based on minimum creatine and NAA, the classifications
based on either the signal-normalized Cre or that normalized
to the value in NAWM achieved the highest specificity of
the MRS measures.

This study addresses the known limitation of taking
metabolite ratios to Cre, and a remaining limitation is that
the signal normalization did not included measured water
density and T1 values, for which alterations from normal
values could affect measurements both within the tumor or
NAWM. It is, however, notable that performance for Cho
alone was poorer than that of Cho/Cre and ChoT/ChoN.
Noncorrelation of the imaging values with image-guided
histology of the tumor sample may be considered as another
limitation of this study.

Conclusion

The results of this study demonstrate that the application of
a comprehensive multiparametric MR protocol enables
grading of gliomas with almost 100 % accuracy. This is
likely to be due to complementary information provided
from perfusion- and diffusion-weighted imaging and spec-
troscopic parameters. Individually, rCBV measurements
provide the utmost diagnostic performance for predicting
glioma grade. This multiparametric MR approach will pro-
vide physicians treating patients with primary glioma with
additional diagnostic information.

Acknowledgments This work was supported in part by Indo-US
Science and Technology Forum award no. 20-2009. BR received
financial assistance from the University Grant Commission, New
Delhi, India. RA received financial assistance from the Indian Council
of Medical Research, New Delhi, India. Sequence and software devel-
opment was carried out under NIH grant R01EB000822.

Conflict of interest We declare that we have no conflict of interest.

References

1. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity,
specificity, and predictive values of perfusion MR imaging and
proton MR spectroscopic imaging compared with conventional
MR imaging. AJNR Am J Neuroradiol 24:1989–1998

2. Chiang IC, Kuo YT, Lu CY et al (2004) Distinction between high-
grade gliomas and solitary metastases using peritumoral 3-T mag-
netic resonance spectroscopy, diffusion, and perfusion imagings.
Neuroradiology 46:619–627

3. Server A, Orheim TE, Graff BA et al (2011) Diagnostic examina-
tion performance by using microvascular leakage, cerebral blood
volume, and blood flow derived from 3-T dynamic susceptibility-
weighted contrast-enhanced perfusion MR imaging in the differ-
entiation of glioblastoma multiforme and brain metastasis. Neuro-
radiology 53:319–330

4. Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the char-
acterization of glial neoplasms: the combined role of single-voxel
MR spectroscopy, diffusion imaging and echo-planar perfusion
imaging. Neuroradiology 49:795–803

5. Arvinda HR, Kesavadas C, Sarma PS et al (2009) Glioma grading:
sensitivity, specificity, positive and negative predictive values of
diffusion and perfusion imaging. J Neurooncol 94:87–96

6. Hlaihel C, Guilloton L, Guyotat J et al (2010) Predictive value of
multimodality MRI using conventional, perfusion, and spectrosco-
py MR in anaplastic transformation of low-grade oligodendroglio-
mas. J Neurooncol 97:73–80

7. Awasthi R, Rathore RKS, Soni P et al (2012) Discriminant analysis
to classify glioma grading using dynamic contrast-enhanced MRI
and immunohistochemical markers. Neuroradiology 54:205–213

8. Moon WJ, Choi JW, Roh HG et al (2012) Imaging parameters of
high grade gliomas in relation to the MGMT promoter methylation
status: the CT, diffusion tensor imaging, and perfusion MR imag-
ing. Neuroradiology 54:555–563

9. Catalaa I, Henry R, Dillon WP et al (2006) Perfusion, diffusion
and spectroscopy values in newly diagnosed cerebral gliomas.
NMR Biomed 19:463–475

612 Neuroradiology (2013) 55:603–613



10. Di Costanzo A, Scarabino T, Trojsi F et al (2006) Multiparametric
3T MR approach to the assessment of cerebral gliomas: tumor
extent and malignancy. Neuroradiology 48:622–631

11. Kim JH, Chang KH, Na DG et al (2006) 3T 1H-MR spectroscopy
in grading of cerebral gliomas: comparison of short and interme-
diate echo time sequences. AJNR Am J Neuroradiol 27:1412–1418

12. Jolapara M, Patro SN, Kesavadas C et al (2011) Can diffusion
tensor metrics help in preoperative grading of diffusely infiltrating
astrocytomas? A retrospective study of 36 cases. Neuroradiology
53:63–68

13. Jakab A, Molnár P, Emri M et al (2011) Glioma grade assessment
by using histogram analysis of diffusion tensor imaging-derived
maps. Neuroradiology 53:483–491

14. Liu X, Tian W, Kolar B et al (2011) MR diffusion tensor and
perfusion-weighted imaging in preoperative grading of supratento-
rial nonenhancing gliomas. Neuro Oncol 13:447–455

15. Law M, Yang S, Babb JS et al (2004) Comparison of cerebral
blood volume and vascular permeability from dynamic suscepti-
bility contrast-enhanced perfusion MR imaging with glioma grade.
AJNR Am J Neuroradiol 25:746–755

16. Jia Z, Geng D, Xie T et al (2012) Quantitative analysis of neo-
vascular permeability in glioma by dynamic contrast-enhanced
MR imaging. J Clin Neurosci 19:820–823

17. Maudsley AA, Darkazanli A, Alger JR et al (2006) Comprehen-
sive processing, display and analysis for in vivo MR spectroscopic
imaging. NMR Biomed 19:492–503

18. Awasthi R, Verma SK, Haris M et al (2010) Comparative evalua-
tion of dynamic contrast-enhanced perfusion with diffusion tensor
imaging metrics in assessment of corticospinal tract infiltration in
malignant glioma. J Comput Assist Tomogr 34:82–88

19. Singh A, Haris M, Rathore D et al (2007) Quantification of
physiological and hemodynamic indices using T1 dynamic
contrast-enhanced MRI in intracranial mass lesions. J Magn Reson
Imaging 26:871–880

20. Server A, Graff BA, Orheim TE et al (2011) Measurements of
diagnostic examination performance and correlation analysis using

microvascular leakage, cerebral blood volume, and blood flow
derived from 3T dynamic susceptibility-weighted contrast-
enhanced perfusion MR imaging in glial tumor grading. Neurora-
diology 53:435–447

21. Haegler K, Wiesmann M, Böhm C et al (2012) New similarity
search based glioma grading. Neuroradiology 54:829–837

22. Pope WB, Sayre J, Perlina A et al (2005) MR imaging correlates of
survival in patients with high-grade gliomas. AJNR Am J Neuro-
radiol 26:2466–2474

23. Chaichana KL, McGirt MJ, Niranjan A et al (2009) Prognostic
significance of contrast-enhancing low-grade gliomas in adults and
a review of the literature. Neurol Res 31:931–939

24. Lote K, Egeland T, Hager B et al (1998) Prognostic significance of
CT contrast enhancement within histological subgroups of intra-
cranial glioma. J Neurooncol 40:161–170

25. Tynninen O, Aronen HJ, Ruhala M et al (1999) MRI enhancement
and microvascular density in gliomas. Correlation with tumor cell
proliferation. Invest Radiol 34:427–434

26. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral
blood flow and volume to evaluate the histopathologic grade of
cerebral gliomas: preliminary results. AJR Am J Roentgenol
179:783–789

27. Narang J, Jain R, Scarpace L et al (2011) Tumor vascular leakiness
and blood volume estimates in oligodendrogliomas using perfu-
sion CT: an analysis of perfusion parameters helping further char-
acterize genetic subtypes as well as differentiate from astroglial
tumors. J Neurooncol 102:287–293

28. Maudsley AA, Domenig C, Govind V et al (2009) Mapping of
brain metabolite distributions by volumetric proton MR spectro-
scopic imaging (MRSI). Magn Reson Med 61:548–559

29. McLean MA, Sun A, Bradstreet TE et al (2012) Repeatability of
edited lactate and other metabolites in astrocytoma at 3T. J Magn
Reson Imaging 36:468–475

30. Hattingen E, Delic O, Franz K et al (2010) (1)H MRSI and
progression-free survival in patients with WHO grades II and III
gliomas. Neurol Res 32:593–602

Neuroradiology (2013) 55:603–613 613


	Utility of multiparametric 3-T MRI for glioma characterization
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	MR imaging
	Statistical analysis
	Sample size estimation


	Results
	Discussion
	Conclusion
	References


