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Summary

Inter-observer variability in anatomical contouring is the biggest contributor
to uncertainty in radiation treatment planning. Contouring studies are fre-
quently performed to investigate the differences between multiple contours
on common datasets. There is, however, no widely accepted method for
contour comparisons. The purpose of this study is to review the literature on
contouring studies in the context of radiation oncology, with particular con-
sideration of the contouring comparison methods they employ. A literature
search, not limited by date, was conducted using Medline and Google Scholar
with key words: contour, variation, delineation, inter/intra observer, uncer-
tainty and trial dummy-run. This review includes a description of the con-
touring processes and contour comparison metrics used. The use of different
processes and metrics according to tumour site and other factors were also
investigated with limitations described. A total of 69 relevant studies were
identified. The most common tumour sites were prostate (26), lung (10),
head and neck cancers (8) and breast (7).The most common metric of
comparison was volume used 59 times, followed by dimension and shape
used 36 times, and centre of volume used 19 times. Of all 69 publications, 67
used a combination of metrics and two used only one metric for comparison.
No clear relationships between tumour site or any other factors that may
influence the contouring process and the metrics used to compare contours
were observed from the literature. Further studies are needed to assess the
advantages and disadvantages of each metric in various situations.

Key words: contouring; delineation; inter/intra-observer variability; radio-
therapy accuracy.

Introduction

Radiotherapy planning relies on accurate definition of
tumour and normal tissues. Variations in contours
defining the tumour and normal tissues are analysed
using contouring studies where multiple contours are
generated either by a number of observers (inter-
observer) or a single observer (intra-observer) for a
set/s of patient images as shown in Figure 1. Contour-
ing studies are typically used to assess different factors
that may influence the contouring process, such as the
impact of new imaging technologies on tumour delin-

eation. Imaging technology in radiation therapy is con-
stantly changing with the introduction of new and
improved imaging modalities.1 New treatment planning
and delivery techniques have also improved the ability
to conform the prescribed doses to the contoured
tumour.2 Thus, the importance of contouring and con-
touring studies has increased, with an emphasis on
defining the tumour and healthy tissues accurately and
consistently.2

Although contouring studies are commonplace, there
is still no widely accepted method of comparing con-
tours. The purpose of this study is to review contouring
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studies in the context of radiation oncology, with par-
ticular consideration on the contouring comparison
methods they employ.

Methods

A literature search, not limited by date, was conducted
using Medline (Ovid Technologies, Inc.) and Google
Scholar (Google, Inc.) with key words: contour, varia-
tion, delineation, inter/intra observer uncertainty and
trial dummy-run. Relevant studies known to the authors
and those identified from the reference list of included
studies were also analysed. Only those publications rel-
evant to radiation oncology were included. The contour-
ing processes and contour comparison metrics used in
these studies were reviewed, and the use of different
processes and metrics according to tumour site and
other factors was detailed.

Results

Sixty-nine studies detailing numerous methods of
contour analysis covering a range of clinical sites were
identified (Table 1). The studies were published between
1993 and 2010.

It is apparent from the literature that the design of a
contouring study can be divided into two steps: (i) how
the imaging and contouring process will be managed;
and (ii) how the contours will be analysed. These steps
were described in varying detail in the literature depend-
ing on the focus of the contouring study.

Contouring process

Clinicians were typically given the images, together with
imaging and pathology information, and were blinded to
other observer’s contours.28,54,56–58,70 In many studies,
the clinicians were given guidelines to use for contour-
ing.3,29,54,70,71 Guidelines usually follow standard contour-
ing protocols29,54,61 and may specify factors, such as
window level settings and software to use, to ensure that
contouring conditions are similar for each observer.3

Very few studies provided detailed guidelines of the
protocol used for defining volumes.4–6,20 For studies util-
ising different imaging modalities, the images are usually
overlaid after they have been spatially registered.72–74

Image registration is a complex process and will not be
considered in this article; readers are referred to Balter
and Kessler’s review.75 Most studies did not describe in
detail how the image and contouring processes were
controlled.

When a multi-institutional contouring study is per-
formed, the investigators may send images and contour-
ing software as a package with pertinent patient
information.7,8 In the case of Steenbakers et al. the soft-
ware was installed on a number of identical computers
(1 GHz with 19-inch monitors) in the institutions partici-
pating in the study7 to ensure that all observers con-
toured under similar conditions. In other cases the
patient imaging and pertinent information was mailed
and observers contoured on their own contouring pack-
age.4,5 Some older studies contoured using a marker on
CT films.21,30,59,65 When analysing the contours on film,
extra steps are involved in scanning the film or physically
measuring the delineations.21,30,59,65

Fig. 1. Multiple contours from a number of observers delineating the breast

tissue.

Table 1. Contouring metrics used for each tumour site as a ratio of the total publications for that site

Site # Publications Volume (%) CI (%) Centre of volume (%) Shape/Dimension (%) References

Lung 10 8 (80) 4 (40) 2 (20) 5 (50) 3–12

Breast 7 7 (100) 3 (42) 4 (57) 5 (71) 13–19

Brain 8 6 (75) 2 (25) 4 (50) 2 (25) 20–27

Prostate 26 21 (81) 5 (19) 4 (15) 16 (62) 28–53

Head and neck 8 8 (100) 3 (37) 1 (13) 2 (25) 25,36,54,55

Pancreas 1 1 0 0 0 56–60

Bladder 3 3 0 2 2 61–63

Rectum 1 0 0 0 1 64

Oesophagus 2 2 1 0 2 65,66

Cervix 3 3 1 2 1 67–69

Total 69 59 (86) 18 (26) 19 (28) 36 (52) –
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Comparison metrics

A number of metrics that have been used for comparing
contours are described next and listed in Table 1.
Figure 2 shows a graphical representation of the metrics
chosen as a percentage utilisation for the five most
common clinical sites studied in this review. Volume was
the most frequently used metric across all tumour sites.
Shape/dimension was the next most frequently used
metric in all tumour sites except for brain and head
and neck, where centre of volume (COV) and concor-
dance index (CI) were the next most frequent metrics,
respectively.

Volume

Volume has been used for a number of different clinical
sites and is the most common metric used in the litera-
ture.3,7,9,13,29,31,32,54,76,77 Although rarely mentioned in the
contouring studies reviewed, there are a number of dif-
ferent software methodologies for calculating the volume
of a structure which may yield different results.78 There-
fore, when conducting a contouring study, it is important
to be aware of the methods of calculation employed by
different software packages. This becomes very impor-
tant if different software packages are to be used for a
single contouring study (i.e. a multi-centre clinical trial).
One common method of volume calculation takes the
number of voxels contained within the contour multiplied
by the size of the voxel.78 The size of the voxel depends on
the resolution of the image reconstruction and the image
slice thickness. A voxel is usually deemed to be within a
contour if the centre of the voxel is within the contour
boundary.29 Studies have used in-house developed soft-
ware,7,32 third party applications,29,31,76 open source,3,71

and treatment planning systems,13,54 for calculating
volumes. Two structures can have the same volume but
different locations, as shown in Figure 3a.

Centre of volume

The COV (sometimes called centre of mass) provides a
single point representing the position of the contour.
Although the method used to calculate COV was rarely
given, there are a number of different methods used by
software to calculate the COV of a structure. These
methods may give different values of COV for a single
structure. One method of COV calculation determines the
COV of every polygon contained within a 3D structure
and generates a weighted sum.79 Another calculation
method determines the centre of a bounding box around
the structure to be the COV.80 Like the volume metric,
the COV is easily calculated and output by treatment
planning systems. The variation in the location of the
COV can be used as a measure of the accuracy of the
contouring process with regard to what is being tested
(i.e. imaging modality, auto-contouring algorithm, con-
touring protocol, etc.). However, the COV has not been
used alone for comparing contours. Two vastly different
structures can have the same or similar COVs as shown
in Figure 3b.

COV analysis has been used frequently in contouring
studies for breast and brain Table 1. COV has been used
when estimating inter-fractional rigid-organ motion to
quantify differences in location between fractions.29

Concordance index

The CI is a volume-derived metric10 that is a measure of
the overlap of two or more volumes. It is often defined as
the percent ratio of the volume of intersection and the
volume of the union of the two volumes. This value
attempts to overcome the lack of positional information
in the volume metric. A CI of 1 represents two structures
perfectly overlapping with identical volume, location and
shape. A CI of 0 means there is no overlap. This metric
is useful when there is a reference volume with which to
compare subsequent volumes. However, the CI does not
give any information on how contours may vary quanti-
tatively in size, shape or location in absolute terms; it is
a relative measure.

Dimension

Dimension metric has been used when investigating con-
touring variability with respect to direction.13 By analys-
ing the contouring variability along a specific axis and
using the standard deviation of this variability, it is
possible to find the axis for which observers have the
most difficulty contouring.13 Dimension may refer to the
encompassing dimension of the structure or the differ-
ences in surface dimensions (also called surface varia-
tion) of two structures. The encompassing dimension
refers to maximal size of the structure along each axis,
while the surface dimensions refer to local shape varia-
tions between structures.

Fig. 2. Graphical representation of metrics chosen as a percentage for each

clinical site.

Techniques of contour comparison
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There are a number of ways to define and calculate
dimension. Encompassing dimensions are usually mea-
sured in voxels and converted to centimetres.13,32,64

The encompassing dimensions of the structure may be
calculated by defining a regular cuboid around the
structure.13,33,81 The cuboid is defined such that its sur-
faces ‘touch’ the outermost surfaces of the structure.
Dimensions defined from the COV have also been used
by ascertaining the COV as described previously, then
defining vectors along each (X, Y, Z) axis.3,29 The
vectors measure the distance from the centre of the
volume to the edge of the volume. By summing
the vectors that span from the COV to the contour
surface in opposite directions, the dimensions are
gained.

Structure dimensions provide information on the size
and, to some extent, the shape of a structure. The
standard deviation of a given dimension can be used as
a measure of contouring variability. One of the limita-
tions of using dimensions defined from the COV is that
the precision depends on how regular the 3D structure
is. For regular structures, the dimensions defined from
the COV closely represent the maximum dimensions of
the structure, whereas in irregular structures, dimen-
sions defined from the COV may be misleading.
Examples of regular structures are breast and prostate;
examples of irregular structures are some lung and head
and neck tumours. Two structures of different volume
could have very similar maximum dimensions as seen in
Figure 3c.

Fig. 3. Shows conceptually and clinically (a)

two contours of equal volume and shape but

different locations; (b) two contours that have

the same centre of volume (COV) but differ-

ent volumes and shapes; and (c) two con-

tours that have similar maximum dimensions

but different volumes and COVs.
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Shape/surface variation

In-house or third party software has frequently been
employed for custom analysis of shape or surface dimen-
sions.7,9,13,31,76,77,82,83 Applications and methods for this
type of analysis were recently summarised by van der
Put et al.77 They described parameterisation as mapping
the surface of a 3D shape to a parametric space such as
cylindrical or spherical polar coordinates. Other methods
are deformation-based methods and variations of line-
based methods.77 Deformation-based methods use
deformable models from image registration algorithms.
Line-based methods use a line (local surface normal,
closest point or coordinate system-based) between the
two contours to determine the difference between them.

The Netherlands Cancer Institute have published a
number of papers that utilise a parameterisation method
of contour shape analysis.7,32,61,64,82 The prostate is suited
to this type of analysis because of its regular near-
spherical shape. In some irregular shapes, the outer
surface is not always ‘visible’ from the origin, leading to
incorrect results.82 Remeijer et al.82 mapped the prostate
contours with spherical coordinates and then applied

statistical analysis to determine the systematic differ-
ences between the contours derived from CT and MRI.
The results were displayed as polar maps (Fig. 4) which
plot q on the vertical axis and j on the horizontal;
differences in radius r are then displayed as changes in
colour. Remeijer et al.82 concluded that by separating
the analysis of the geometric and statistical differences
in three-dimensional shapes, the process preserves
the geometric information and is non-computationally
intensive.

Song et al.29 used a central point line-based method of
shape analysis for prostate. They took an average COV
and then cast out rays to intersect with the surfaces of
the contours. The difference in length of the rays
between each contour was then used as a measure of
the contouring variability. The observer variability was
then mapped onto the average prostate surface in colour
to display the results as seen in Figure 5. A limitation of
this method is that it only works with regular-shaped
volumes like the prostate21,75. Both the methods used by
Song et al.29 and Remeijer et al.82 can be used in two and
three dimensions.

The nearest point line method77 takes one contour as
the reference and one as the target, then measures the
distance from the reference to the target. One drawback
mentioned is the lack of symmetry.76 Interchanging the
reference contour and the target contour yields different
results as demonstrated in Figure 6. This can be over-
come by taking the measurement twice, interchanging
the contours and then using the mean distance.76

In order to overcome inconsistencies (Fig. 6) in shape
comparison methods, van der Put et al.77 introduced the
ComGrad method. This algorithm works by performing a
signed distance transform on both contours. A distance
transform is a commonly used image processing tech-
nique whereby the pixels in an image are replaced by a
scalar value that quantifies the distance to some point or
boundary (Fig. 7).

The vector field of the gradient direction for both
distance transforms is then computed. This gives a

Fig. 4. Example of polar maps used to display differences in contouring of the

prostate by Remeijer et al.82 (used with permission).

Fig. 5. Example of the display method used

by Song et al.29; the SD of the observer varia-

tion is mapped onto the average prostate

surface (used with permission).

Techniques of contour comparison
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directional component to the scalar distance previously
calculated for the pixels. The vector fields for both con-
tours are then combined, thus relating the distance and
directional information. A line that is parallel to the
vector field from some arbitrary point on one contour
that corresponds to a point on the other contour is now
drawn. This line provides a local distance measure for
complex shapes that is not asymmetric. A large number
of these lines are drawn and measured, which can then
be plotted as a polar map for example.

Discussion

A number of different methods have been utilised for
comparing contours. The common metrics used are
volume, COV and shape/dimension. Studies specifically
analysing contouring variation, such as evaluation of

auto-contour algorithms, tend to have more in-depth
analysis of the contours generated, i.e. dimension analy-
sis and shape variation,3 as dimension analysis and
shape variation can give more detailed insight into any
systematic errors in the algorithms.

The accuracy and consistency of contouring may be
affected by several factors, including: (i) advances in
medical imaging technology;84 (ii) developments in
software capabilities, such as auto-contour algo-
rithms;3,9,31,64,76,85 (iii) the design and use of imaging and
contouring protocols; (iv) inconsistent levels of imaging
expertise; and (v) access to different imaging modali-
ties.71,84 Contouring studies reviewed in this paper used
a variety of metrics to assess the influence of these
factors. There are no metrics used consistently for
assessing the influence of each of these factors on con-
touring.

Each of the comparison metrics has limitations and
thus it is desirable to use multiple metrics where pos-
sible. Volume gives no indication of the location or shape
of the contour. Conversely, COV and shape/dimension
give no indication of the volume of the contour (Fig. 3).
CI attempts to overcome this with a measure of overlap
which gives some insight into the volumetric and spatial
relationships of two or more contours. Limitations of
the different shape/surface analysis techniques were
observed, most notably the lack of symmetry of the
nearest point method.

The absence of a gold standard contour that outlines
the true extent of the object being contoured makes it
impossible to make conclusions about the absolute accu-
racy of contours. Contouring comparisons were generally
limited to measuring the variation of contour differences.
A reference contour from which to measure the other
contours against is commonly used, giving a common
frame of reference for the statistical variation of each of

Fig. 6. Image shows the limitations of the aforementioned shape analysis

methods. The radial and surface normal methods may overestimate the dis-

tance. The closest point and surface normal methods are not symmetric, i.e.

the distance is different when going from contour A to B than it is from B to A

(used with permission from van der Put et al.77).

Fig. 7. Two-dimensional graphical representation of a chess board distance transform on a binary image; the pixels are replaced with a scalar indicating the

distance to the boundary, where the boundary is displayed in red (a) shows the original field where pixels with 1 are within the boundary, and (b) shows the

transformed image where the numbers represent the distance to the boundary.
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the contouring metrics to be compared. The choice of
this gold standard or reference contour varies in the
literature from a mathematical average contour, a
radiologist-defined contour, an experienced oncologist-
defined contour or a consensus contour that is decided
upon by a panel of experts.10,13,29,54 One study by Gao
et al. compared prostate gland delineations to images
from the Visible Human Project.28 This study demon-
strated that inter-observer contour variations persist
even when the structure being contoured is well
visualised.

The clinical impact of variation in contouring is
unknown. The geometric uncertainty as a result of con-
touring variation is larger than that of set-up errors and
organ motion for some tumour sites.84 Weiss and Hess84

describe the uncertainty because of contour variation as
systematic and random for the individual but random for
a population. An individual may consistently define
larger or smaller volumes with some intra-observer
variation, but for large numbers of patients and observ-
ers, these contribute to an overall random error. This
becomes important in multi-centre clinical trials where a
large variation in contouring processes between centres
may impact on trial outcomes. While the ‘true’ tumour is
unknown, it is intuitive that variation in contouring
increases the probability of some geometric miss of the
tumour, which will have a clinical impact.86

No clear relationship between the choice of metrics
used and tumour site or any other factors was observed
from the literature. This suggests that the choice of
metrics in many studies is somewhat arbitrary and not
determined on any established clinical basis. Further
studies are needed to assess the impact of contouring
variation. Inconsistencies in methods of contour com-
parison may be addressed through the implementation
of consensus guidelines for analysis. These could be
included as a software package not dissimilar to current
clinical trials packages like SWAN.87 Given the clear
uncertainty in contouring, without established methods
of contour comparison the impact of variation will be
difficult to investigate on a large scale.

Conclusion

There is no consistent or widely accepted method of
systematic contour comparison. A number of contouring
metrics exist; some of which are available in treatment
planning systems and others require specialised soft-
ware. Volume was the most frequently used metric
across all tumour sites. Shape/dimension was the next
most frequently used metric in all tumour sites except for
brain and head and neck, where COV and CI were the
next most frequent metrics, respectively. A number of
different methods of calculating the same metrics were
reported but many studies did not provide details on
calculation methods. No clear relationships between
tumour sites or any other factors that may influence the

contouring process and the metrics used to compare
contours were observed from the literature. This sug-
gests that the choice of metrics in many studies is
somewhat arbitrary and not determined on any estab-
lished clinical basis. Further studies are needed to assess
the advantages and disadvantages of each metric in
various situations.
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