Homotopic H's

- Homotopic Hydrogens

Hydrogens are chemically equivalent or homotopic if replacing each one in turn by the same group would lead to an identical compound

3-Chloro-2-methylpropene
1-Chloro-2-methylpropene

If replacement of each of two hydrogens by some group leads to enantiomers, those hydrogens are enantiotopic

Di̊stereotoppic RTs

If replacement of each of two

 hydrogens by some group leads to diastereomers, the hydrogens are diastereotopic- Diastereotopic hydrogens have different chemical shifts and will give different signals

Vinyl Protons

Integração

INTEGRATION OF A PEAK

Not only does each different type of hydrogen give a distinct peak in the NMR spectrum, but we can also tell the relative numbers of each type of hydrogen by a process called integration.

Integration $=$ determination of the area under a peak

The area under a peak is proportional to the number of protons that generate the peak.

Benzyl Acetate

The integral line rises an amount proportional to the number of H in each peak

$55: 22: 33=5: 2: 3$
simplest ratio of the heights
Actually:

SPIN-SPIN SPLITTING

Bonded to the same carbon: two bonds between protons

spin-spin splitting is normally observed (if nonequivalent)

Bonded to adjacent carbons: three bonds between protons

spin-spin splitting is normally observed
(this is the most common case)

SIGNAL SPLITTING; THE ($\mathrm{N}+1$ 1) RULE

- Peak: the units into which an NMR signal is split; doublet, triplet, quartet, etc.
- Signal splitting: splitting of an NMR signal into a set of peaks by the influence of neighboring nonequivalent hydrogens
- $(n+1)$ rule: if a hydrogen has n hydrogens nonequivalent to it but equivalent among themselves on the same or adjacent atom(s), its ${ }^{1} \mathrm{H}$-NMR signal is split into $(n+1)$ peaks

Signal Splitting (n + 1)

For these hydrogens, $\mathrm{n}=\mathbf{1}$; their signal is split into $(1+1)=2$ peaks; a doublet
$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{Cl}$ Cl

For this hydrogen, $n=3$; its signal is split into $(3+1)=4$ peaks; a quartet

Siennal Splitting (m + 1)

Problem: predict the number of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals and the splitting pattern of each
(a) $\mathrm{CH}_{3} \stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3} \stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

Origins off Signol Splittiong

- Signal coupling: an interaction in which the nuclear spins of adjacent atoms influence each other and lead to the splitting of NMR signals
- Coupling constant (J): the separation on an NMR spectrum (in hertz) between adjacent peaks in a multiplet;
- a quantitative measure of the influence of the spin-spin coupling with adjacent nuclei

1,1,2-Tribromoethane

Orioins of Signal Splitting

H_{b} in 1,1,2-Tribromoethane

THE TRIPLET IN ${ }^{1} H$ NMR

H_{a} is coupled to H_{b} and H_{b}
H_{b} can both be parallel, anti-parallel or one parallel and one anti-parallel
$\therefore \mathrm{H}_{\mathrm{a}}$ splits into a 1:2:1 triplet peak

H_{a} in 1,1,2-Tribromoethane

Origins off signal Splitting

One H_{b} atom

Two equivalent H_{b} atoms

Three equivalent H_{b} atoms

Observed splitting in signal of H_{a}

The Quartet in 1 HicliR

Chemical Shift

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$

© 2004 Thomson - Brooks/Cole

SIGNAL SPLITTING

- Pascal's Triangle
- as illustrated by the highlighted entries, each entry is the sum of the values immediately above it to the left and the right

Origins of Signal Splitting

because splitting patterns from spectra taken at 300 MHz and higher are often difficult to see, it is common to retrace certain signals in expanded form ${ }^{1} \mathrm{H}$-NMR spectrum of 3-pentanone; scale expansion shows the triplet quartet pattern more clearly

Equivalent Protons do not Couple

Three C-H protons are chemically equivalent; no splitting occurs.

Four C-H protons are chemically equivalent; no splitting occurs.

COUPLING CONSTANTS

- Coupling constant (J): the distance between peaks in a split signal, expressed in hertz
- the value is a quantitative measure of the magnetic interaction of nuclei whose spins are coupled

Physicall Basis for $(n+\mathbb{1})$ Rulle

- Coupling of nuclear spins is mediated through intervening bonds
- H atoms with more than three bonds between them generally do not exhibit noticeable coupling
- for H atoms three bonds apart, the coupling is referred to as vicinal coupling

Coupling Comstwnits

\circ an important factor in vicinal coupling is the angle α between the $\mathrm{C}-\mathrm{H}$ sigma bonds and whether or not it is fixed

- coupling is a maximum when α is 0° and 180°; it is a minimum when α is 90°

MECHANISM OF COUPLING - THREE BOND COUPLINGS, ³ J

This observation was quantified by Martin Karplus, who determined that the experimental data best fit the following equation:

$$
3 J_{H H}=A+B \cos \alpha+C \cos 2 \alpha
$$

Where A, B, and C are empirically determined constants
This observation showed the variation of coupling constant with dihedral

More Complex Splitting Patterns

- thus far, we have concentrated on spin-spin coupling with only one other nonequivalent set of H atoms
- more complex splittings arise when a set of H atoms couples to more than one set H atoms
- a tree diagram shows that when H_{b} is adjacent to nonequivalent H_{a} on one side and H_{c} on the other, the resulting coupling gives rise to a doublet of doublets

More Complex Splitting Patterns

\circ if H_{c} is a set of two equivalent H , then the observed splitting is a doublet of triplets

More Complex Splitting Patterns

- because the angle between C-H bond determines the extent of coupling, bond rotation is a key parameter
- in molecules with relatively free rotation about C-C sigma bonds, H atoms bonded to the same carbon in CH_{3} and CH_{2} groups generally are equivalent
- if there is restricted rotation, as in alkenes and cyclic structures, H atoms bonded to the same carbon may not be equivalent
- nonequivalent H on the same carbon will couple and cause signal splitting
- this type of coupling is called geminal coupling

More Complex Splitting Patterns

- in ethyl propenoate, an unsymmetrical terminal alkene, the three vinylic hydrogens are nonequivalent

More Complex Splitting Patterns

a tree diagram for the complex coupling of the three vinylic hydrogens in ethyl propenoate

More Complex Splitting Patterns

- Complex coupling in flexible molecules
- coupling in molecules with unrestricted bond rotation often gives only $m+n+$ I peaks
- that is, the number of peaks for a signal is the number of adjacent hydrogens +1 , no matter how many different sets of equivalent H atoms that represents
- the explanation is that bond rotation averages the coupling constants throughout molecules with freely rotation bonds and tends to make them similar; for example in the $6-$ to $8-\mathrm{Hz}$ range for H atoms on freely rotating $s p^{3}$ hybridized C atoms

More Complex Splitting Patterns

- simplification of signal splitting occurs when coupling constants are the same

More Complex Splitting Patterns

- an example of peak overlap occurs in the spectrum of 1-chloro-3iodopropane
- the central CH_{2} has the possibility for 9 peaks (a triplet of triplets) but because J_{ab} and J_{bc} are so similar, only $4+1=5$ peaks are distinguishable

STEREOCHEMISTRY \& TOPICITY

- Depending on the symmetry of a molecule, otherwise equivalent hydrogens may be
- homotopic
- enantiotopic
- diastereotopic
- The simplest way to visualize topicity is to substitute an atom or group by an isotope; is the resulting compound
- the same as its mirror image
- different from its mirror image
- are diastereomers possible

Stereochemistry \& Topicity

- Homotopic atoms or groups

Dichloromethane (achiral)

- homotopic atoms or groups have identical chemical shifts under all conditions

Stereochemistry \& Topicity

- Enantiotopic groups

Chlorofluoromethane (achiral)

Chiral

Substitution produces a stereocenter; therefore, hydrogens are enantiotopic. Both hydrogens are prochiral; one is pro-R-chiral, the other is pro-S-chiral.

- enantiotopic atoms or groups have identical chemical shifts in achiral environments
- they have different chemical shifts in chiral environments

Stereochemistry \& Topicity

- Diastereotopic groups
- H atoms on C-3 of 2-butanol are diastereotopic
- substitution by deuterium creates a chiral center
- because there is already a chiral center in the molecule, diastereomers are now possible

- diastereotopic hydrogens have different chemical shifts under all conditions

Stereochemistry \& Topicity

- The methyl groups on carbon 3 of 3-methyl-2butanol are diastereotopic
\bigcirc if a methyl hydrogen of carbon 4 is substituted by deuterium, a new chiral center is created
- because there is already one chiral center, diastereomers are now possible

3-Methyl-2-butanol

- protons of the methyl groups on carbon 3 have different chemical shifts

Stereochemistry and Topicity

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 3-methyl-2-butanol
- the methyl groups on carbon 3 are diastereotopic and appear as two doublets

1,1-Dichloroethane

Ethyl benzene

Methyl Isopropyl Ketone

1-Nitropropane

Differentiateusing ${ }^{1} \mathbf{H}$ NMR

(a) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ and
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and

(c) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
$\stackrel{\text { I }}{\|}$
(d) $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CCH}_{3}$

$\mathrm{H}_{2} \mathrm{C}-\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
and

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CCH}_{3}$
and
$\stackrel{\stackrel{\mathrm{O}}{\|}{ }_{\mathrm{CH}}^{3} \mathrm{CH}=}{\mathrm{CHCCH}}{ }_{3}$

Coupling Constants (J values)

(free rotation) $7 \mathrm{~Hz}^{\mathrm{a}}$

Approx. J
8 Hz
(ortho)

2 Hz
(meta)

${ }^{\text {a }}$ The value of 7 Hz in an alkyl group is averaged for rapid rotation about the carbon-carbon bond. If rotation is hindered by a ring or bulky groups, other splitting constants may be observed.

Para Nitrotoluene

Bromoethane

Quartet due to coupling with $-\mathrm{CH}_{3}$
Triplet due to coupling with $-\mathrm{CH}_{2} \mathrm{Br}$ (c) 2004 Thomson/Brooks Cole

para-Methoxypropiophenone

Styrene

H_{a} splitting in Styrene "Tree" Diagram

In the system below, Hb is split by two different sets of hydrogens : Ha and Hc

- Theortically Hb could be split into a triplet of quartets (12 peaks) but this complexity is rarely seen in aliphatic systems

Why go to a higher field strength?

