
MASARYK UNIVERSITY
FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Virtualization using Docker

Platform

MASTER’S THESIS

Vladimír Jurenka

Brno, Spring 2015

Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Vladimír Jurenka

Advisor: Filip Nguyen, RNDr.

ii

Acknowledgement

I would like to thank my supervisor RNDr. Filip Nguyen, for his
advices, encouragement and insightful feedback.

iii

Abstract

The aim of the diploma work is to provide an overview of virtu-
alization methods, while focusing on Docker. This new virtualiza-
tion platform, which greatly differs from the traditional, virtual ma-
chine based approach to virtualization, has sparked massive interest
in Linux containers. As a result, many Docker based projects have
emerged ranging from simple command line tools to entire operat-
ing systems. To gain a deeper understanding of Docker’s internal
mechanisms, the practical part of this thesis demonstrates working
with Docker’s Remote API and further enhances Docker with a new
command.

iv

Keywords

Docker, virtualization, virtual machines, containers, vmware, virtu-
albox, linuc, lxc, namespaces, cgroups

v

Contents

1 Introduction . 1
2 Virtualization . 2

2.1 Virtualization use cases 2
2.2 Virtual machine based virtualization 4

2.2.1 Virtual machine monitors 4
2.2.2 Software based virtualization 5
2.2.3 Hardware assisted virtualization 7
2.2.4 VirtualBox . 8
2.2.5 VMWare Player 9
2.2.6 Other tools . 10

2.3 Container based virtualization 11
2.3.1 Chroot and jail 11
2.3.2 Namespaces . 12
2.3.3 Control groups 14
2.3.4 Container based virtualization tools 15
2.3.5 Comparison with virtual machines 17

3 Docker . 18
3.1 History of Docker . 18
3.2 Docker daemon . 19
3.3 Libcontainer . 20
3.4 Layering filesystem in Docker 21
3.5 Security . 22
3.6 Performance . 24
3.7 Future . 24

4 Using Docker . 31
4.1 Installing Docker . 31
4.2 Docker basics . 33
4.3 Docker containers . 36
4.4 Docker images . 36

4.4.1 Docker registry 37
4.4.2 Docker Hub . 38

4.5 Docker Orchestration Tools 39
4.5.1 Docker Swarm 39
4.5.2 Docker Machine 40
4.5.3 Docker Compose 40

vi

4.6 Family of Docker APIs 41
4.6.1 Docker Remote API 41

4.7 Docker vs other container technologies 42
5 Implementation . 43

5.1 Using Docker Remote API 43
5.2 Docker update . 44

6 Conclusion . 47
7 Appendix . 49

7.1 Attached files . 49

vii

1 Introduction

"Virtualization refers to the creation of virtual machines which have
an independent Operating Systems but the execution of software
running on the virtual machine is separated from the underlying
hardware resources. Also it is possible that multiple virtual machines
can share the same underlying hardware."[1] It has been around for
many years, throughout which the range of offered features widened
and its performance gradually increased. However, there is still some
space for improvement and one particular project - Docker is trying
exactly that. This thesis therefore takes a look at the core virtualiza-
tion technologies and tools and compares them to Docker, which is
also described in detail along with other tools built on top of it.

The first chapter starts with the presentation of the most frequent
use cases for virtualization and later explains the two major approaches
to it. Next, the focus shifts to the analysis of virtual machine based
virtualization techniques and tools. A more lightweight method of
creating an isolated environment, container based virtualization, is
described afterwards, presenting both its benefits and shortcomings
as well as several available tools.

The third chapter introduces Docker, the new popular virtualiza-
tion platform and describes its history and inner structures, while
taking a look at its security and performance. Furthermore an overview
of several large Docker-based virtualization projects is provided. As
to how to use Docker, the following chapter explains its core princi-
ples, high-level tools and ends with a comparison to the other con-
tainer based virtualization tools.

Finally, in the implementation part, Docker Remote API is used
to exchange a file between two running containers. This simple test
of Docker-java library serves as an example of interoperability of
Docker with custom programs or scripts. Last but not least, Docket
itself is modified and extended with a new command - docker up-
date.

1

2 Virtualization

2.1 Virtualization use cases

On a daily bases, virtualization is used all in information systems
all over the world. Large companies like Google, Facebook, Amazon
or Microsoft use it on several layers of their infrastructure, but this
technology is not employed only in server clusters, but millions of
people use it on their personal computers as well. Its wide range of
use cases could be split into these categories:

Consider running an instance of resource intensive application,
for example Matlab. Using the benefits provided by executing it in-
side a virtualized environment, it could be easily restricted from ex-
hausting the system’s computational power and memory. Such use
case is relatively rare when using a personal computer, but common
in both academic and enterprise environments.

Testing is an important part of every software’s development life-
cycle. Especially for big, multiplatform projects, testing usually in-
cludes running the product on several system configurations. A dif-
ferent configuration may mean another version of operating system
and used libraries or even an entirely different operating system.
Available system resources, hardware and installed drivers are ad-
ditional aspects that contribute the application’s behaviour, so swap-
ping or limiting them could also be the focus of testing. Having these
different configurations on physical computers would prove imprac-
tical from both the timely and economical points of view.

Virtualization technologies are often closely related to emulation,
currently mostly visible when employing virtual machines. Thanks
to them, it is possible to run software written for entirely different
architectures such as running ARM applications on x86 systems, or
Linux software on Windows and vice versa.

Security experts frequently need to run an application in a sand-
boxed environment, when static analysis doesn’t lead to any signifi-
cant conclusions. Moreover, even ordinary users can become worried
about how an untrusted piece of software might affect their primary
system. The benefits offered by the ability to run the application in-
side an isolated system are what makes virtualization technologies

2

2. VIRTUALIZATION

extremely valuable in such scenarios.
Many IT companies do not have their own cloud infrastructure,

but rather rely on using external solution. On the other hand a com-
pany having a large computational capacity may decide to rent some
of it. There are many products from the cloud computing business on
the market, but they can be separated into the following categories:

• IaaS - Infrastructure as a Service refers to offering access to
part of the clouds infrastructure, such as servers, data storages
or network components. The provider is responsible for the
hardware’s maintenance, while it’s up to the customer to take
care of the software he or she wants to run. Examples include
Google Compute Engine, Microsoft Azure or Amazon Web Ser-
vices, where the latter two may be also used as PaaS.

• PaaS - When deploying an application to cloud, it is often enough
to use parts of the existing environment, rather than starting
from zero. Platform as a Service is built on top of IaaS, and
refers to environment which is largely set up and prepared
to host the customer’s services. In the contrast to IaaS, which
is centred around managing the entire infrastructure, PaaS fo-
cuses on the individual applications. Commonly used PaaS prod-
ucts are OpenShift, Google App Engine and Heroku.

• SaaS - Built on top PaaS, Software as a Service are applications,
which are already deployed in the cloud, are offered to cus-
tomers. In this model, the provider is the one responsible for
the applications’ updates and availability. Office 365, Gmail or
other Google Apps are all examples of SaaS

The virtualization takes place in all three layers, even in IaaS, as
it often doesn’t represent the hardware directly but rather a set of
resources isolated from the rest of the cloud by using the means of
virtualization. The operating system environment in the case of PaaS
or the application instances in the case of SaaS are also isolated.

3

2. VIRTUALIZATION

2.2 Virtual machine based virtualization

2.2.1 Virtual machine monitors

Virtual machine monitors, sometimes referred to as hypervisors are
software or hardware solutions which enable creation and running
of virtual machines. Popek and Goldberg have stated the following
characteristics of virtual machine monitors [3]:

• The efficiency property. All innocuous instructions are executed
by the hardware directly, with no intervention at all on the part
of the control program.

• The resource control property. It must be impossible for that
arbitrary program to affect the system resources, i.e. memory,
available to it; the allocator of the control program is to be in-
voked upon any attempt.

• The equivalence property. Any program K executing with a
control program resident, with two possible exceptions, per-
forms in a manner indistinguishable from the case when the
control program did not exist and K had whatever freedom of
access to privileged instructions that the programmer had in-
tended.

Two types of hypervisors are distinguished. The first type runs
directly on the the hardware, while hypervisors of the second type
act as applications inside another operating system. The operating
system with direct access to hardware is called host, whereas the sys-
tems in virtualized environments are called guests.

4

2. VIRTUALIZATION

Comparison between hypervisors of Type 1 and Type 2

Examples of type 1 hypervisors are Oracle VM Server, XenServer,
Microsoft Hyper-V or VMware ESXi. Type 2 hypervisors include VMware
Workstation or VirtualBox.

2.2.2 Software based virtualization

Since the guesting operating systems always run on top of a hyper-
visor, they do not access the hardware directly. Furthermore, from
a security viewpoint, the shouldn’t even be able to, since otherwise
they would be able to corrupt the host or take control of it. In the
following subsections, the detailed causes of the two most notable
performance penalties of virtual machines are explained.

CPU

Modern CPUs utilise a resource protection scheme where several
privilege rings are created and each of them represents a different
level of trust. An x86 architecture offers up to four rings (numbered 0
to 3) and usually a lower ring number represents more trusted code.
Sometimes, the ring numbers are referred to as current privilege level
- CPL. The operating system’s part, which needs the most privileges
runs in ring 0, device drivers run in ring 1 or more and for most other
applications, the highest ring number is enough. Some instructions,
for example direct I/O require the highest privileges. When a user
application needs such instructions, it calls a function provided by
the operating system, which triggers execution of operating system’s

5

2. VIRTUALIZATION

kernel code, running in ring 0. Once the function completes, the func-
tion returns the appropriate result and the execution of the applica-
tion’s code continues, with privileges falling back. Such mechanism
is called a system call, the lower privileged layer(ring), where appli-
cations run marks the user space, and the kernel’s layer is labelled as
kernelspace.

From the virtualization perspective, this provides a security mech-
anism, which helps to satisfy the virtual machines monitor’s security
property. By not running the guest code in ring 0, the host operating
system is the only one with full control of the computer’s resources.
However, when the guest operating tries to execute a system a call, it
would fail, since it doesn’t run in ring 0. To overcome this issue, one
can employ paravirtualization, a compile-time technique, in which
the instructions that are impossible to execute in virtualized environ-
ment are replaced statically. Furthermore, additional drivers may be
installed, which allow the host to communicate with the hypervisor.
Another option is to replace the instructions at runtime, by scanning
the executing code and patching it where necessary.

Memory

Modern processors use a concept of virtual memory, where every ap-
plication gets the illusion, that it can use the entire system memory
for itself. In order for this technique to work, the operating system
has to manage the mapping of virtual memory to physical memory. If
the total memory consumed by applications is larger than the phys-
ical memory, parts of the virtual memory are temporary moved to a
secondary storage (disc).

Since the guest operating system doesn’t know that the host is
already managing the virtual memory, this introduces a heavy per-
formance penalty for virtual machines, because every memory ac-
cess from the guest has to be mapped firstly in the guest’s address
space and then again in the host’s address space. The solution is to
shadow the page table, (the structure which keeps track of memory
mappings), where every time the guest maps a memory, the hypervi-
sor performs a direct mapping to host’s memory in the shadow table.
Then, when the guest attempts to access the memory, the shadow
page table is used instead of the one managed by the guest.

6

2. VIRTUALIZATION

2.2.3 Hardware assisted virtualization

Historically, there wasn’t much support for virtualization in the com-
puter’s hardware. However in 2005 and 2006, two new technologies
were released, AMD-V[5] for AMD processors and Intel VT[4] for In-
tel processors. While both technologies are very similar in their func-
tionality, the terminology slightly differs. I have decided to use the
AMD-V terminology in the rest of the chapter.

CPU

A new structure was introduced - Virtual machine control block (VMCB),
which represents a virtual machine inside the CPU. When a VMCB
is run (VMRUN instruction), CPU executes the following steps:

• The hosts state is saved in a memory area specified by VCMB

• The guests state is loaded from a memory area specified by
VCMB

• The guest code begins to run

The VCMB structure also contains the desired CPL level, allow-
ing the virtual machine to run even at ring 0. However, some oper-
ations, such as direct device I/O are still prohibited and cause the
virtual machine to exit the guest state. After the exit, virtual machine
monitor may decide to change several fields in the VCMB, thus ef-
fectively emulating the I/O and execute VMRUN again.

Memory

Intel and AMD have also come with a mechanism to eliminate the
need for shadowing page tables. Extended Page Tables (Intel) and
Rapid Virtualization Indexing (AMD) are examples of secondary level
address translation, where the nested page tables are created and
maintained by the hardware. In this model, the hardware performs
both the translations from guest’s virtual address space to guest’s
physical address space and from guest’s physical address space to
host’s physical address space.

7

2. VIRTUALIZATION

2.2.4 VirtualBox

VirtualBox is an open source, type 2 hypervisor. It was initially devel-
oped by Innotek GmbH, a German company, which was later bought
by Sun Microsystems. Today, VirtualBox is branded as Oracle prod-
uct, since in 2010, Oracle acquired Sun Microsystems. The full prod-
uct name is thus Oracle VM VirtualBox.

VirtualBox supports all major operating systems as either hosts
or guests and with the exception of a guest OS X on non-Apple hard-
ware (although this is possible using a cracked image of the OS X
installation). Both software based and hardware assisted virtualiza-
tion are implemented. 64-bit guests are supported as long as either
the host is 64-bit or 64-bit hardware virtualization is supported on
the CPU.

Other notable features are shared folders, shared clipboard or
cloning of virtual machines. A complete state of any running virtual
machine (Snapshot) can also be saved to a file and restored later. Vir-
tualBox offers a rich GUI interface, a command line interface (VBox-
Manage), an interactive Python Shell and web API. A portable ver-
sion that doesn’t require installation is available too, under the name
Portable-VirtualBox.

VirtualBox’s GUI

8

2. VIRTUALIZATION

2.2.5 VMWare Player

VMWare player is a virtualization software created by the company
VMWare. While VMWare offers a big range of virtualization prod-
ucts, I will focus on VMWare player and only mention the other ones
briefly, since VMWare Player is the only one that can be used for
free, (and thus can be a better comparison for VirtualBox and Docker,
which are both free) although the licence restricts this to be a non-
commercial use.

VMWare Player’s features differ very little from what is offered
by VirtualBox. In the terms of supported operating systems, the most
notable missing feature in VMWare Player is the inability to install
it on OS X (VMWare offers a commercial product VMWare Fusion).
On the other hand, it is possible to install retail copies of OS X as
a guest system even on non-Apple hardware. Another missing fea-
ture is taking snapshots, which is only available in the commercial
VMWare products. For some features, such as sharing clipboard and
folders, VMWare Player requires VMWare tools to be installed on in
the guest system.

Similar to VirtualBox’s API, VMWare’s VIX API gives the abil-
ity to control virtual machines programmatically. VIX also contains
a command line utility vmrun, which enables using VMWare Player
without GUI.

VMWare Player in use

9

2. VIRTUALIZATION

2.2.6 Other tools

Quick Emulator (qemu) is an open source virtual machine monitor.
It runs on Linux, WIndows and OS X. As the name suggests Qemu
can perform an emulation of a hardware and thus enable the host
to run software written for different architecture. One can utilise this
to run only one application or an entire operating system. Perfor-
mance wise, emulation of the cpu instruction set is a costly process
so qemu is often used in conjunction with another virtualization soft-
ware which handles the execution.

KVM - kernel-based virtual machine, an extension to the Linux
kernel, giving it type 2 hypervisor capabilities. KVM works by expos-
ing an API, which can be used to interact with some kernel and hard-
ware features. This API is then used by a client such as Qemu. This
allows the software hosted by Qemu to run much faster. Hardware-
assisted virtualization is used, so a CPU supporting it is required.

Xen, initially released by the University of Cambridge in 2003 is
an example of type 1 Hypervisor. It has grown into “#1 Open Source
hypervisor according to analysts such as Gartner. Conservative es-
timates show that Xen has an active user base of 10+ million: these
are users, not merely hypervisor installations which are an order of
magnitude higher. Amazon Web Services alone runs ½ million vir-
tualized Xen Project instances according to a recent study and other
cloud providers such as Rackspace and hosting companies use the
hypervisor at extremely large scale. Companies such as Google and
Yahoo use the hypervisor at scale for their internal infrastructure.“
[6] In Xen’s terminology, the installed hosts are called domains, out of
which exactly one is privileged domain0. Domain0 is used for man-
agement and control of the other unprivileged domains (domainU
guests) and contains network and disc drivers for paravirtualized
guests.

10

2. VIRTUALIZATION

Xen architecture

Parallels Desktop for Mac Parallels Desktop for Mac is a com-
mercial virtualization tool for OS X, which is popular mainly due it
Windows-virtualization capabilities, although Linux, OS X and a few
other operating systems are supported as well. It relies on hardware-
assisted virtualization technology from Intel. While the company Par-
allels offered virtualization products for several platforms, a lot their
products such as Parallels Workstation became discontinued in 2013.

2.3 Container based virtualization

Providing an isolated environment inside the hosting operating sys-
tem is commonly known as operating-system level virtualization and
such an isolated enviroment can be defined as container: “A con-
tainer is a self contained execution environment that shares the ker-
nel of the host system and which is (optionally) isolated from other
containers in the system.“ [11] Commonly used technologies are So-
laris Containers or Zones, OpenVZ, FreeBSD jails and LXC.

2.3.1 Chroot and jail

As Linux developed, the idea to isolate a process from the host filesys-
tem arose and a chroot command was created for this purpose. Ch-
root being short for change root is both a utility and a system call and

11

2. VIRTUALIZATION

it allows to specify a new root directory other than /. The process and
its children then can’t access files above the new root directory while
programs from elsewhere can still see inside the the new root. It a
crucial that none of the processes inside can obtain root privileges as
that can potentially allow them to break out of the specified direc-
tory. Such a procedure is often called jailbreak and could be easily
performed by issuing chroot again while leaving open a file descrip-
tor pointing to a file outside of the newly selected root directory.

Nowadays chroot is used to provide basic isolated environments
for testing unknown and unstable applications or for discovering un-
wanted dependencies. Package building tools like Pbuilder for De-
bian or Mock for Fedora also utilise chroot to provide isolation and
enable testing in different Linux distributions.

An advanced mechanism built on top of chroot is jail. It is avail-
able in FreeBSD since 2000 and adds isolation of process lists, sets
of users and networking. Jail can therefore define a new root user,
which has full control inside it, but cannot reach anything outside.
The limitations are in the form of inability to mount or unmount
filesystems or modifying the network configuration. Jails can be started,
stopped or restarted and with the use of ezjails utility, even archiving
and later restoring a jail is possible.

2.3.2 Namespaces

Namespaces are one of the key features of the Linux kernel for sup-
porting lightweight virtualization. "The purpose of each namespace
is to wrap a particular global system resource in an abstraction that
makes it appear to the processes within the namespace that they have
their own isolated instance of the global resource." [13] To get a better
understanding, I will focus at the individual types. Six namespaces
are currently available in Linux.

Mount namespace was the first one implemented and its behaviour
is quite intuitive. All the mounts/unmounts from the global names-
paces are visible in it. Mounts/unmounts which happen in the names-
pace remain invisible to all other namespaces including the global
one. However setting a master-slave relationship is also possible, to
allow propagation of mounted devices.

UTS(Unix timestamp sharing) allows to isolate gethostname(),

12

2. VIRTUALIZATION

getdomainname() identifiers as well as corresponding members of
uname(). Any changes made by calling sethostname() or setdomain-
name() are only visible inside the caller’s namespace.

IPC(Interprocess communication) namespace similarly provides
isolation for System V IPC (shared memory, semaphores) and differ-
ent filesystems for POSIX message queues.

PID(process ID) namespace isolates the list of process ids. It al-
lows processes from different namespaces to have the same PID and
nesting of PID namespaces is allowed. The principle is that a process
from a particular namespace can see (and send signals) only to pro-
cesses in its own namespace or in namespaces nested below it. The
first created process in PID namespace has PID = 1, and when any
process in the current namespace dies, all of its orphan processes be-
come children of the process with PID = 1. It is not possible to send
SIGKILL to any process with PID = 1.

Network namespaces allows each namespace to have it’s own
network stack, including but not limited to: IP addresses, port num-
bers, routing tables, firewall rules, network devices. When a new net-
work namespace is created, it only contains the loopback device(lo),
however network devices may be moved across the network names-
paces. The rule is, that a network device other, than lo may only
belong to one network namespace. Furthermore, physical devices
cannot be moved from the default namespace. Thus if one wants to
give networking capabilities to a non-default network namespace,
the usual approach is to create a virtual ethernet device (veth) in the
default namespace, bridge one end with physical devices and move
the other end to namespace, which needs networking. Nesting of net-
work namespaces is also possible.

User namespaces, the last namespace to be implemented, give
means to processes to have different user and group ID inside the
user namespace. Files /$proc_id/uid_map and /proc/$proc_id/gid_map
contain the actual mapping of user(group) ID ranges from child to
parent user namespaces. The primary benefit is, that even a non-
privileged user can start a process with root privileges, inside a par-
ticular namespace. Nesting of user namespaces is supported.

The implementation of namespaces added two new system calls,
setns() for joining an existing namespace and unshare(), which al-
lows the calling processes to continue in a newly created namespace.

13

2. VIRTUALIZATION

The clone() system call has added 6 new flags, one for each of the
namespaces, to allow the child process resulting from the call to start
in a newly created namespace.

2.3.3 Control groups

With the use of namespaces, processes could be isolated from each
other, but that’s still far from what standard virtualization offers. As
the term suggests, virtual machine monitors provide also ways to
manage the virtual machines, not just create and run them. Here’s
where control groups, frequently abbreviated to cgroups, come in
the picture.

Control groups is a kernel feature originally started in 2006 by
Google engineers that enables administrators to restrict and/or limit
the usage of system resources for groups of processes. The groups
can be nested in a forest-like structure, where the roots of trees are
the default groups of each system.

Subsystems are the controllers referring to individual system re-
source types. Configurations for every subsystem’s group are stored
in filesystem (usually /cgroups/subsystem/), where the default groups
settings reside. Settings for child groups are also stored here, recur-
sively stored in additional directories. The most commonly used sub-
systems are the following:

• blkio - Control of access to block io devices. Can be used to
limit read / write speed, or set read / write priority of a group,
either globally or in per each device. Speeds can be set in io
operations or bytes per second.

• cpu - Assign the overall CPU power, either setting the CPU
priority or the absolute time from a set period the processes
can run.

• cpusets - Specify individual CPUs the group can use.

• devices - Allows to create a whitelist containing access rights
to individual devices.

• memory - Impose limits on the memory used by all processes
in the groups. It’s possible to include swap memory.

14

2. VIRTUALIZATION

• net_prio - Can override SO_PRIORITY option of processes’ sock-
ets, which is used as the priority level of packets in the Linux’s
networking queues.

Moreover, cgroups provide a freezer subsystem, which can be
used to freeze a non-root group of processes. Cgroups can be used
also for monitoring, where each relevant subsystem keeps stat files,
tracking every groups resource consumption. A notification mech-
anism can be used to capture various events, such as reaching the
allocated resource limit.

2.3.4 Container based virtualization tools

LXC (Linux containers) combines the features offered by namespace
and control groups to create a fully isolated environment, which is
can be easily managed - a container. Since containers are the unit
LXC deals with, the basic operations are all provided: creating, start-
ing, stopping, listing and removing containers. An empty container
won’t be of much use to anyone, therefore it is possible to create
containers based on a template, which sets up the container’s initial
filesystem and configuration. LXC comes bundled with templates for
several major Linux distributions. Additionally LXC can freeze and
unfreeze containers, giving the ability to suspend and later resume
their execution. It is also possible to create a checkpoint, an informa-
tion about the state of a container. The container can be later restored
to its previous state, captured by the checkpoint. Cloning of contain-
ers is also possible. Containers can be also interacted with program-
matically, either using containers lifecycle management hooks, or us-
ing an API - liblxc, which has binging for several language, including
Java, C, Python, Ruby and Go.

OpenVZ from Parallels is another container based virtualization
technology, and is somehow an ancestor to the LXC project, as lot
of LXC’s codebase is either derived from OpenVZ or contributed by
OpenVZ team members. The core distinction is, that OpenVZ project
uses its own kernel, originally derived from Linux’s kernel version
2.6. However, most of the kernel changes required by OpenVZ were
recently ported to the official kernel and thus it is possible to run a
feature-limited version OpenVZ on the official kernel. Even if OpenVZ

15

2. VIRTUALIZATION

may seem like an outdated software, many system admins prefer it
over LXC, since it has been used successfully for long time and thus
proved itself in production environments. LXC also doesn’t have all
the features offered by OpenVZ, such as live migration - suspen-
sion of a running container on one host and resuming it on another.
OpenVZ is often used to provide virtual private servers (VPS).

I’ve mentioned several virtualization tools, and there are many
more available. Since it is quite possible for a company to have mul-
tiple virtual machines and / or containers, each created by a differ-
ent virtualization provider, their management could become a com-
plex task. To overcome this problem, libvirt provides a unified API,
supporting every hypervisor that was mentioned and several oth-
ers, even from the container-based virtualization world. While it is
written in C, bindings for other popular programming languages are
available as well. Libvirt can be used on Linux, Windows as well as
on OS X.

Libvirt provides unified interface for many hypervisors[7]

Virt-manager (Virtual Machine Manager) is virtual machine man-
agement tool built by Red Hat on top of libvirt, which comes with a
rich GUI. It is currently only available on Linux.

16

2. VIRTUALIZATION

Virt-manager’s GUI [8]

2.3.5 Comparison with virtual machines

Virtual machines create a new instance of an operating system for ev-
ery virtual machine run. This gives several benefits such as the abil-
ity to run entirely different guest system, compared to host it also
comes with many drawbacks. The first thing that comes to mind is
the virtual machine execution overhead, caused either by the virtual
machine monitor’s instruction patching and translation, the paravir-
tualization drivers or in case of hardware assisted-virtualization, the
source of the overhead is the CPU context swapping. Secondly the
virtual machines take much more disc space and are more difficult
to maintain.

When compared to virtual machines, it’s the additional overhead
that containers takes away. Containers only require the application
and it’s dependencies, while the kernel is shared among them. Be-
cause the operating system is already running, starting a container
tends to be much quicker than starting a virtual machine. Shared
kernel may not always be a benefit, as for example running Windows
applications in containers on Linux is not possible.

17

3 Docker

The idea behind Docker project is well expressed by the following
goal set by its development team: "To build the ’button’ that enables
any application to be built and deployed on any server, anywhere."
[14] At it’s core, Docker is an open-source platform which allows
applications to be deployed inside software containers. This start-
up from the Silicon Valley has quickly caught attention of IT-world
leading companies. Amazon, Google, Microsoft and Red Hat added
support for Docker to their platforms and continuously contribute to
the project.

But Docker is more than just a virtualization library, it abstracts
away the differences between operating systems distributions and
creates a standardized environment for developing applications. A
software developer can create a standardized application which be-
comes portable and can run everywhere where the Docker Engine
is installed. This saves a lot work for the author as it is no longer
necessary to support many different platforms and operating system
distributions. System administrators need to spend less time con-
figuring the application as it comes packed with all its dependen-
cies. The fact that each application runs in it’s own container solves
many common problems like completely uninstalling or replacing it
or when two applications require two different versions of the same
dependency.

Docker is a relatively new piece of technology, so it still comes
with some limitations. Firstly, it only supports application which can
be run on Linux, at least for now, although the recent partnership
with Microsoft may change things in the future. Docker also runs
natively only on Linux, and while it’s possible to use additional soft-
ware to run it on Windows or OSX, it still requires a virtual machine
to do so.

3.1 History of Docker

The initially internal project in dotCloud was released as open source
in March 2013. Two months later, the public Docker registry was
launched. In the second half of the year Google, Yandex and Baidu

18

3. DOCKER

(Russian and Chinese most used search engines) have integrated Docker
into their cloud services.

Docker entered 2014 with completing a $15 million fund[15], al-
lowing it to heavily invest both in the open source project and planned
enterprise support as well as in expanding the community platform.
In April, LXC was dropped as the default execution environment in
favour of Docker’s own libcontainer. Next month, Ubuntu 14.04 be-
came the first enterprise grade Linux distribution to ship with Docker
natively packaged, bringing millions of Ubuntu servers no more than
three command away from using Docker containers. The version 1.0
was finally released in June at the first Docker-centric conference -
DockerCon. September brought the announcement that another ma-
jor fund of $40 million was raised[16], valuing the project at roughly
$400 million[17]. One month later, Docker and Microsoft declared
partnership with the goal of creating Docker Engine for Windows
Server and multi-Docker container model, including support for ap-
plications consisting of both Linux and Windows Docker containers.
In December the first official Docker conference in Europe took place
in Amsterdam, announcing several new Docker related projects as
well as Docker Hub Enterprise. Docker finished the year 2014 with
the release of 1.4, being the 24th most starred project on GitHub.

In February 2015, version 1.5 was released, bringing IPv6 sup-
port, read only containers and support of multiple Dockerfiles per
project. Shortly afterwards, a trio of orchestration tools was announced
: Docker Machine, Docker Swarm and Docker compose. The current
stable version(1.6) was released in April and came with the long ex-
pected Windows client and the ability to apply custom labels to im-
ages and containers.

3.2 Docker daemon

Internally Docker uses a client-server model, where the server is a
daemon which may run on an entirely different system than the client.
The daemon may be either started by using the docker command
while passing -d flag, or starting it a service with systemctl start
docker or service docker start. Privileged account is required to run
docker in daemon mode, although significant effort is made to re-

19

3. DOCKER

move this drawback, so even regular users would be able to run con-
tainers.

By default, the server only listens on a Unix socket, making itself
unreachable over the network. This is a security feature, since any-
one who can access the daemon could easily take control of the en-
tire host. A trivial attack would be to run a container with mounted
host’s / directory. The container would then be able to rewrite any
host’s file. Therefore it is critical to only run Docker on public IP with
TLS, where each client is authenticated by a certificate from a trusted
certificate authority.

3.3 Libcontainer

In Docker vs 0.9 a concept of execution drivers was introduced and
two drivers became supported: the LXC driver, which used the in
past required liblxc and the native driver utilising Dockers own li-
brary, libcontainer. It’s written purely in Go and handles the manage-
ment of containers, using the previously mentioned kernel capabili-
ties such a namespaces and control groups. Libcontainer is expected
to be ported to other other languages and to support operating sys-
tems, removing the need for additional tools such as Boot2docker
when Docker is being run on Windows.

20

3. DOCKER

Execution drivers in Docker

3.4 Layering filesystem in Docker

When launching a container, Docker uses a mechanism called union
mount - filesystems are not mounted at different places but on top
of each other, thus a directory content may be composed of files a
directories from different filesystems.

In Docker, applications usually specify a parent image. For exam-
ple, an web application could depend on a specific web server, which
in contrast would depend only on an operating system. This means,
every image adds a new read only layer in the filesystem on top of its
parent’s layer. Once the application is started as a container an addi-
tional writable layer is put on top. When a file from a read-only layer
needs to be changed, this file is copied to the writeable layer and the
change is made there. It is important that the changes to the upper
layer persist even after the container exits and thus are still in effect
during its next run.

21

3. DOCKER

Docker’s filesystem[12]

Data volumes are an exception to the union file existing. They
give way to sharing data between containers, making direct changes
to the filesystem and these changes are not included when commit-
ting updates to the used image. One can create an empty data vol-
ume or mount a host file or directory. A data volume may be either
added to a specific container or a dedicated data volume container
may be created, which can be not only be shared among containers,
but advances functions such as migrations, backups and restores are
also provided by Docker.

3.5 Security

Docker currently requires root privileges, therefore if it gets compro-
mised, the host will be exposed as well. I have showed an example
of such situation in the chapter about the Docker daemon. Mainly
because of this security threat, one of goals for Docker is the ability
for non-root users to run containers[2, p. 110]. Docker has already
announced that it’s working on it, changing the architecture to two

22

3. DOCKER

daemons. The current daemon will run in user space, while the priv-
ileged operations will be forwarded to a new service in kernel space.

In December 2014, Docker promoted a new feature called image
signing. It was long requested for images to contain a cryptographic
signature, so that they will be verified prior to running. However,
a detailed inspection of the implementation revealed that “Docker’s
report that a downloaded image is verified is based solely on the
presence of a signed manifest, and Docker never verifies the image
checksum from the manifest. An attacker could provide any image
alongside a signed manifest. “ [23] Even additional problems were
found such as badly constructed tarsum used for the image veri-
fication, processing the manifest after the image was extracted, or
the fact that if the manifest is incorrect only a warning is issued and
the image is still run. In response to the mentioned discoveries, the
Docker team initiated a security audit a promised to revise Docker’s
security.

The other potential threat to container based virtualization comes
with security issues in the Linux namespaces implementation. Namely,
bugs are being discovered in the user namespace, which hasn’t yet
been thoroughly tested in production as it was implemented quite
recently. An example of a recently discovered vulnerability is, that
process could potentially gain access to a filesystem entry, to which
even the user running it was denied access. This could be accom-
plished by the possibility of dropping supplementary groups from
within a user namespace. It could be achieved by calling setgroups,
which was possible prior to the existence of guid mapping (thus
having root privileges only in namespace). Several other vulnera-
bilities have also been reported and fixed in the recent months. Re-
cently, during a security fix in December 2014, one the kernel’s devel-
oper has warned, that “..while it seems possible to contain privilege
within a user namespace, there is always the possibility of surprises
like this one hiding in the corners of the system. It may be some time
yet before we can be truly confident that all of those surprises have
been found and that the unprivileged creation of user namespaces is
truly a safe thing to allow.” [24]

23

3. DOCKER

3.6 Performance

A detailed performance testing of Docker was done by IBM in Jan-
uary 2014. The tests comparing the Docker to virtual machines cov-
ered memory access, block I/O, networking and benchmarking Re-
dis and MySQL instances. Considering the differences between the
two virtualization technologies, the results confirmed what was ex-
pected: “Both VMs and containers are mature technology that have
benefited from a decade of incremental hardware and software op-
timizations. In general, Docker equals or exceeds KVM performance
in every case we tested. Our results show that both KVM and Docker
introduce negligible overhead for CPU and memory performance
(except in extreme cases).” [25] The tests have also revealed that the
performance of Docker can significantly differ depending on whether
it’s using the host’s network or a NAT bridge. Similarly, the overhead
is slower when data are stored on a shared volume rather than in the
union filesystem.

3.7 Future

Docker has inspired the creation of many projects, which take ad-
vantage of it’s functionality. While these projects are under develop-
ment, new ones are still emerging, as everyone wants to fill a gap in
the market as soon as possible. It yet remains to be seen, which ones
will emerge as winners from this competitive environment, but I will
mention the ones that seem to show the greatest premises.

Kubernetes

Google, undoubtedly one of the largest data centre operator, has also
admitted that every single one of their services runs inside a Linux
container [26]. While they have not yet shared their main internal
task scheduler - Omega, they have released another container man-
ager Kubernetes, as an open-source project. Currently, the containers
are run inside Docker, although support of rkt, which will be covered
in a later chapter, is planned as well.

Kubernetes introduces the concept of Pods - groups of contain-

24

3. DOCKER

ers that are relatively tightly coupled and are treated as the small-
est deployable unit. A common use case would be a main container
running a web application utilising several other containers with its
helper services. It makes sense for these containers to start/stop at
the same time and to run on the same host. Pods have usually at-
tached labels (key,value pairs) to them, which enables querying the
cluster nodes running a particular group of pods.

The next abstraction is Service - a label-defined groups of ports,
exposing the same port and running the same application. A pod
may stop running on a node and be replicated on another, so with
the use of a service, other pods doesn’t need to keep track, which
pod is running of which node, instead, they can use a virtual IP of
the service.

To support scaling, Kubernetes introduces replication controllers.
A replication controller uses a template, according to which the pods
are created and allows to set the numbers of pod replicas to be run-
ning. This can be used to easily increase or decrease the number
of the running instances of an application. Another use case would
the update of an application, when using one replication controller
for the old version and one for the new version, continuous uptime
could be achieved.

25

3. DOCKER

Kubernetes architecture

Mesos

“If a Docker application is a Lego brick, Kubernetes would be like a
kit for building the Millennium Falcon and the Mesos cluster would
be like a whole Star Wars universe made of Legos.” [27]. Apache
Mesos, launched in 2013, abstracts the resources available in a clus-
ter, presenting it as a single gigantic computer. Its architecture de-
fines the concept of a framework - an application written for Mesos,
which contains a scheduler an an executor for the application’s tasks.
Kubernetes may be used as one of the frameworks so a possible task
may be the launching of a pod.

The interaction cycle between the cluster, Mesos and a framework
can be described as follows:

• A Mesos slave daemon runs on every node in the cluster

26

3. DOCKER

• One Mesos master daemon is used to control the slaves

• Slaves present resources available on the node to the master

• Master node selects a framework and offers it part of the avail-
able resources along with node identifiers - the policy for de-
ciding which framework gets which resources is configurable.

• Framework’s scheduler decides which tasks to run on which
nodes and specifies the resource allocation

• Master node invokes frameworks executor on the selected nodes,
with the requested resources

Mesos quickly gained popularity in companies, which employ
huge clusters. Namely PayPal, Vimeo, Twitter, Airbnb, Netflix are
all using Mesos. Even Apple has announced, that Siri, the personal
assistant in iOS uses Mesos in its backend [28].

A datacenter operating system called Mesosphere is currently be-
ing built on top of Mesos, which focuses on scaling, self-healing and
fault tolerance. It is expected to be released in 2015.

CoreOS

CoreOS is a small open source operating system based on Google’s
Chrome OS. With its first release in the fall of 2013 it started to push
its vision of a container-centric operating system. This means that
CoreOS doesn’t include a package manager, but the applications are
instead provided in the means of containers. Docker is currently used
as the container manager.

CoreOS tries to target cloud infrastructure with it’s two key utili-
ties, etcd and fleet. Etcd is shared cluster configuration management
daemon, providing an API for propagation of configuration changes
across an entire cluster of etcd instances. On the other hand, fleet is
a cluster level systemd control daemon. It allows to deploy contain-
ers either globally(across all machines in the cluster) or on a single
machine with support for failover.

27

3. DOCKER

a cluster of CoreOS hosts with containers[10]

Snappy Ubuntu Core and LXD

Another operating system, targeted to running containerized appli-
cations is Canonical’s Snappy. This project is trying to provide the
minimal operating system required for running container based ap-
plications, although very few applications have been ported. Multi-
ple container providers are supported (including Docker), which are
called frameworks.

Snappy comes with atomic update system, which applies to both
installed applications and Snappy itself. Updates happen in the form
of transactions, so it is always possible to rollback a failed / unde-
sired update. Internally Snappy keeps the base versions of all pack-
ages, and updates only send the difference from the previous ver-
sion.

Ubuntu is also developing LXD (Linux Contained Daemon), which
is aiming to “take all the speed and efficiency of docker, and turn it
into a full virtualisation experience” [29]. LXD should be an exten-
sion to LXC, providing a REST API and most notably live migration
support and checkpoint-resume abilities for containers.

28

3. DOCKER

Project Atomic

Project Atomic is a set of components which provide solutions for de-
ploying containerized applications. The main result of Project Atomic
are Project Atomic hosts, which are lightweight operating systems
based on either Red Hat Enterprise Linux, Fedora or CentOS. The
components included are most notably Docker, Kubernetes, SELinux,
rpm-ostree and Project Cockpit.

Rpm-ostree is yet another tool for providing atomic updates to
the operating system. A previous version is also stored for rollback-
ing purposes, since it works by placing the updated version in a
newly created filesystem root. The system then boots from the new
filesystem, keeping the previous version intact.

Project Cockpit is remote Linux server manager, which comes
with also contains a web based GUI. Its main benefit is providing
clean visualization of the server’s status, which is a great help for
new system administrators. Project Cockpit is expected to ship with
Fedora Server 21 as well.

Project Cockpit’s GUI [9]

Rkt

In December 2014, the CoreOS team has expressed its concern about
the direction the Docker project has taken and released a blog post,
which immediately caught attention. They expressed their disagree-
ment with how wide the scope of Docker has grown:

29

3. DOCKER

“When Docker was first introduced to us in early 2013, the idea
of a standard container was striking and immediately attractive: a
simple component, a composable unit, that could be used in a vari-
ety of systems. The Docker repository included a manifesto of what a
standard container should be.“ [30] [31]. "We thought Docker would
become a simple unit that we can all agree on." “The standard con-
tainer manifesto was removed. We should stop talking about Docker
containers, and start talking about the Docker Platform. It is not be-
coming the simple composable building block we had envisioned.”

This criticism was probably targeted at the trio of projects, Docker
Machine, Docker Swarm and Docker Compose, which were released
in 2015. They also claim that the architectural model of Docker, where
everything runs through a central daemon, is "fundamentally flawed"
from the security’s perspective. Such arguments immediately spawned
discussions whether or not is Docker trying to do too much and
becoming a large monolithic platform, without providing reason-
able modularity, or has only stepped into the business area of other
project/startups and this blog is an example of an attempted defense.

Furthermore, the post contained an announcement of Rocket - a
new container runtime and a direct competitor to Docker. CoreOS
vision is to center it around a specification for containers and the
“App Container executor,” which they included and encouraged de-
velopers to submit feedback for [32]. Later, it was renamed to rkt -
“rock it”. Rkt is currently under heavy development, with very little
documentation or examples, but it already allows running of native
Docker images.

They team has also expressed, that it is possible for Docker to im-
plement their App Container specification, making the two projects
interoperable. A statement, that CentOS will continue to ship Docker
was included too.

30

4 Using Docker

4.1 Installing Docker

Installation of Docker on any major Linux distribution is nowadays
a very straightforward process, which means simply using the dis-
tribution’s native package manager.

Ubuntu

Assuming the version 14.04, the installation command is

sudo apt-get install docker-io

alternatively, using wget

wget -qO- https://get.docker.com/ | sh

CentOS, Fedora

On these distributions, yum gets to act

sudo yum install docker-io

Sometimes, the package name mentioned is just docker, however
there may be a package name conflict with the a system tray applica-
tion (for example on CentOS 6.5), thus it’s safer to use docker-io.

Boot2Docker

Boot2Docker is lightweight Linux distribution, based on Tiny Core
Linux - which is another very small (12 MB) distribution. One of its
most frequent use cases is running Docker on Windows or OS X. For
Windows and OS X an installer is provided, which installs Virtual-
Box and creates a virtual machine with the Boot2Docker system and
adds an application and shell commands for it’s management.

31

4. USING DOCKER

Windows

Even though Docker requires Linux’s kernel, it’s possible to install it
on Windows via Boot2Docker, which we will explore later. However,
it is possible to use a client only version, which was released with
Docker 1.6. The package is currently available only through choco-
latey package manager [18].

32

4. USING DOCKER

OS X

With OS X, the situation is similar to Windows, meaning that one
can either use Boot2Docker or Kitematic. Kitematic works similarly
to Boot2Docker, employing VirtualBox to create a virtual machine
with Docker, but provides a rich GUI for Docker’s management.

Kitematic GUI

4.2 Docker basics

In this chapter, I will explain the basic workflow required to get an
application running inside Docker.

33

4. USING DOCKER

Basic workflow in Docker

As with any other platform, the first step to run an application is
to somehow get its binaries/scripts/data. For Docker, the entire ap-
plication is packaged in what is called an image and these images are
stored in registries. Currently, there is a default registry [20], which
can be explored using a browser or alternatively use Docker’s search
command to list the available images.

The search command actually returns repositories, which can con-
tain several versions of a particular image, each with a different ver-
sion tag, but exactly one is tagged as “latest”. A docker image is also
uniquely identified by an ID. It is important to notice that only the
image’s ID is a truly unique identifier, since even when two images

34

4. USING DOCKER

may come from the same repository and have the same version tag,
they may still be different, for example in the case of the tag “latest”.

The whole point of using Docker is of course, the virtualization
it brings, so when an image is run, Docker creates a container and
places the application from the image inside it. To run an image, one
can specify either the image’s ID, repository name with tag, or only
the repository name in which case, the default tag "latest" is used.

The parameters -t -i cause Docker to attach a pseudo TTY to the
container, so after all the layers are pulled, the console output from
the container can be seen.

A number of other optional parameters can be passed as well,
including the options to name the container, specify port mapping
from the container to the host, or use custom DNS servers for the
container.

The console output also says, that the image was automatically
downloaded from the registry, prior to running it. If we wanted just
to download the image, we could have used the command docker
pull. One more option that may be the desired, is just to create a
container from an image, but not to run it. For this purpose, there’s a
docker create command.

35

4. USING DOCKER

4.3 Docker containers

For containers on the host, Docker provides all the basic features,
such as listing the running containers, stopping or removing them.
The more interesting capabilities are examining logs(docker logs),
viewing processes inside containers(docker top) or connecting to a
running container(docker attach). One of the important options is
the ability run the container in the background using the daemon
mode with -d switch.

When starting a container, it is possible to impose restrictions on
the number of resources it can use. To force a maximum memory
limit for a given container, -m parameter is used, and -c parameter
to give it a CPU priority level. These parameters are actually passed
to the cgroups module, that was described earlier. Mapping the con-
tainer’s ports to the host’s ports allows the possibility of having mul-
tiple containers, in which processes run on the same port.

4.4 Docker images

Inside the Docker environment, applications are provided in the form
of read-only application images. Such an image contains the applica-
tion together with a reference to its parent image, so a layered archi-
tecture is created. If an image has no parent image, it is called base or
root image. Common examples of root images are those of Linux dis-
tributions. The process of creating an application image for Docker
is often referred to as dockerizing.

Building a custom image

Currently, there are two possible ways to create an application im-
age. One can run an existing image as a container and make changes.
Issuing the command docker commit saves the changes and it can
be followed by a docker push command, storing the changes in a
repository. The other way is to take advantage of automated build-
ing of images. This is handled by a command docker build, which re-
quires the instructions to be provided in a Dockerfile. Supported in-
structions include copying and downloading files, executing scripts,

36

4. USING DOCKER

specifying the parent image and data volumes, exposing ports and
several other options. It is also possible to create a base image, either
by providing a tar archive of an existing filesystem to docker import
command, or specifying a special image called scratch (it contains an
empty filesystem) as parent image.

A sequence of Dockerfile instructions to dockerize an application
may look as following:

FROM repository:image #parent image
MAINTAINER name email #maintainer
ENV key value #set environment variable
RUN/ADD/COPY commands #install application, copy and down-

load data
EXPOSE port1, port2 #expose ports
ENTRYPOINT /path/to/app #path to binary
VOLUME /path/to/data/volume #data volume

Here is a real world example, the Dockerfile of open-jdk8 con-
tainer, with stripped comments [19]:

FROM buildpack-deps:sid-scm
RUN apt-get update && apt-get install -y unzip &&
rm -rf /var/lib/apt/lists/
ENV JAVA_VERSION 8u40
ENV JAVA_DEBIAN_VERSION 8u40-b27-1
ENV CA_CERTIFICATES_JAVA_VERSION 20140324
RUN apt-get update && apt-get install -y openjdk-8-jdk="
$JAVA_DEBIAN_VERSION" ca-certificates-java="
$CA_CERTIFICATES_JAVA_VERSION" && rm -rf /var/lib/apt/lists/×

RUN /var/lib/dpkg/info/ca-certificates-java.postinst configure

4.4.1 Docker registry

If a developer wants to shade his images, the easiest way is to up-
load them to a Docker registry. He can choose either a public reg-
istry, available at Docker Hub [20] or use a private registry. Inside the
registry, the various images of an application reside in a repository.

37

4. USING DOCKER

Working with the repository is similar to using git version control
system. It means commands such as push (uploading a new version)
and pull (downloading the latest version) are used to for interaction
with the registry.

Registries also comes with several features which help in the pro-
cess of creating new versions of images. Automatic builds provide a
way of automatically building an application image in a repository
from a github or bitbucket source and a Dockerfile, while Webhooks
and Webhook chains allow to send one or more HTTP requests with
specific JSON payloads. This can be used as a way to send notifica-
tions about a new update of the application image.

There are currently two versions of Docker registry project, both
of them being open source. The older one(v1), written in Python,
was used in Docker up to v1.6, until the stable release of the cur-
rent version, Distribution (v2), which is written in Go. Distribution
claims to offer faster push and pull requests, while also having more
efficient implementation. Even though the versions try to maintain
backwards compatibility as much as possible, some registry end-
points still vary slightly.

4.4.2 Docker Hub

The major differences between Docker Hub and a registry are, that
there is exactly one instance of Docker Hub (managed by Docker
Inc.) and it only handles user authentication and authorization plus
it contains the checksums of images, while there may be multiple reg-
istries which store Docker images. Docker Hub currently also hosts
the largest public registry, so sometimes the terms Docker Hub and
public registry are interchanged.

Docker Hub’s registry contains three kinds of repositories: offi-
cial repositories, which contain images from vendors and Docker
contributors; private repositories, where non-public images can be
kept; public repositories for sharing public images. As of April 2015,
Docker Hub’s public registry offered over 45 000 images, which means
that basically all major Linux software is already dockerized.

38

4. USING DOCKER

Public registry on Docker Hub

4.5 Docker Orchestration Tools

4.5.1 Docker Swarm

Docker Swarm is a clustering tool for Docker. In other words, it takes
several Docker Engines and exposes them as a single instance. All
commands from the standard Docker Engine are available, but a few
more were added, to setup the swarm and specify the placement
of containers. There are several options how to add individual ma-
chines to the cluster. The most dynamic solution is to generate a clus-
ter id and then pass it to swarm join command on each node. On the
other hand, one can attach a list of nodes’ IP addresses either explic-
itly or passing a filename to load the list from. Other options include
etcd, zookeeper and consul.

Once the swarm is formed, a swarm manage command will start
the swarm manager and regular Docker commands can now be is-
sued for the entire swarm. For creation of new containers, a strat-
egy needs to be picked, to decide how to assign them to nodes. The
default strategy, BinPacking, tries to avoid fragmentation and thus
places the new container into to node with the highest resource us-
age, which still has enough resources left to run it. The second cur-
rently implemented strategy is to simply pick a random node.

When using Docker Swarm, additional parameters can be passed

39

4. USING DOCKER

to the docker run command, which can add further restrictions for
picking the node to run the image. Such are restrictions are called
filters and may force or exclude the selection of a specific node by
name, available ports, operating system, kernel version, the node’s
storage type or place the container on the same node as some other,
already placed container.

4.5.2 Docker Machine

The tool Docker Machine is a an example how classic and container
based virtualization can coexist and complement each other. The idea
is to use a dedicated virtual machine whose primary function is to
run docker daemons. It is also integrates well with Docker Swarm,
so a cluster can be created too.

Docker Machine then offers all the basic commands for manage-
ment so one can not only create, start, restart, stop, remove and list
the virtual machines, but also upgrade the docker daemon or SSH
into the virtual machine. This approach offers several benefits over
using only the docker daemon. First, Docker Machine is not only
available on Linux, but support Windows and OSX as well. Second it
can work with both local virtual machines, such as those created by
VirtualBox or with cloud solutions (Microsoft Azure). Last but not
least, Docker Machine aims to be a from zero to Docker tool, which
means the tool itself takes care of common tasks such as generating
SSH keys for the new machines or installing Boot2Docker as an op-
erating system on a newly created machine.

There are currently twelve implemented drivers for virtual ma-
chine providers, offering support for example for VirtualBox, VMware
vSphere, Microsoft Azure and Amazon EC2 and six more drivers are
at the pull request stage. It should be noted, that at the present time,
Docker machine is under active development and it’s usage in pro-
duction is thus not recommended. However a peek on the upcoming
features can be found in the projects roadmap [?, DockerRoadMap]

4.5.3 Docker Compose

It is often the case, that complex software is composed of several
components, for example a webserver and a database. It would be a

40

4. USING DOCKER

repetitive and possibly error prone task, to install every single com-
ponent manually, so a project called Fig was created. In February
2015, Fig was deprecated in favour of Docker Compose, which is
based on Fig’s code base.

The main idea is the ability to link several containers together,
allowing to compose a complex application from several images. It
uses a yaml configuration, which also allows to specify the settings
for exposing ports, passing environment variables and mounting data
volumes. A configuration may also extend an existing one, so for ex-
ample an application can have a simple common configuration plus
two specialized ones, one for development and the other one for
production. Docker compose works well with Docker Swam, where
linked containers are scheduled on the same host.

4.6 Family of Docker APIs

Docker platform comes with three separate APIs, to allow interac-
tion with third party applications: Docker Hub API, Docker Registry
API and Docker Remote API. All of the APIs work over HTTP and
conform to the REST style.

Docker Hub API provides services for users, such as registering,
updating and logging in and allows to create and delete repositories,
There is currently no client library for this API. Docker Registry API
handles putting and getting images and also exposes a search func-
tion. An AngularJS client library is currently the only one available
[22]. Docker Remote API is covered separately in the next chapter.

4.6.1 Docker Remote API

For a company managing hundreds or thousands of virtualized en-
vironments an automated way of management is always helpful.
Docker thus comes with an API for remote interaction with contain-
ers - Docker Remote API. Docker Swarm also uses the same API,
but exposes additional information, such as IP or name of the node
which runs a specific container. However, not all endpoints are im-
plemented yet. The API could be used as simply as any REST API
by utilising curl, or with the help of a client libraries. These are avail-

41

4. USING DOCKER

able in many languages: C++, C#, Java, Python, Ruby, PHP, Go and
several more.

By default, the Docker daemon listens on a Unix socket and is
thus available only locally, however a TCP port may also be speci-
fied, by using the option -H when starting docker daemon or creat-
ing an environment variable with name DOCKER_HOST. Once the
Docker runs on a public TCP port, Docker Remote API may be used
to manage containers and images.

4.7 Docker vs other container technologies

After exploring the major features offered by Docker a comparison
with LXC and OpenVZ can take place. It is clear, that Docker is much
higher level tool, which is intended to simplify the containers man-
agement while adding additional features, such as its API.

From the architectural point of view, the probably most signifi-
cant difference is between Docker images and LXC / OpenVZ tem-
plates. The images are reusable, thanks to the parent-child relation-
ship, both versionable and easily shareable, because of Docker Hub
and registries. Images are also easily buildable and deployable.

Several new projects built on top of Docker will be introduced in
the next section. All of them currently support Docker, some even
require it to be the containers manager. This put Docker far ahead of
other container technologies ,as the range of available tools is much
larger, while still steadily growing.

42

5 Implementation

The second part of this thesis focusing on practical experience with
Docker. Firstly, I will use Docker Remote API with a corresponding
client library to transfer a file between two Docker containers, each
running on a different host. The other task is to enhance Docker with
a new command, docker update which simplifies detection of out-
dated images.

5.1 Using Docker Remote API

Docker-java

Currently, there are three Java client libraries for Docker’s remote
API. All these are open source projects, with their code available on
github. For the purposes of our thesis I have picked docker-java [33],
simply because it is the most starred project from those three.

On the positive side, the library is easy to setup, supports SSL,
tries to stay up to date with Docker API and the code has very good
test coverage. The configuration is especially well done, since it’s
possible to provide it either programmatically, via property file or
using environment variables.

What I think could be improved, is the sparse documentation.
Completing the project’s wiki or using more comments in sources,
would help in cases where the usage is not intuitive and the only
remaining option is to study tests’ sources. It is mentioned that only
a subset of the API is provided, but it is not clear what exactly is
missing, although all the important features seem to be supported.

Setup

I have decided to demonstrate the API’s power by programmatically
transferring a file over SCP using Docker-java. My setup consisted of
the following machines:

• Ubuntu 14.10, virtual machine created using VMWare Player

– Running Docker with Ubuntu 14.04 container (A)

43

5. IMPLEMENTATION

* Destination for file

• Fedora 21, virtual machine created using VMWare Player

– Running Docker with Ubuntu 14.04 container (B)

* File to copy (source file)

• Windows 7, physical machine (C)

– Running VMWare Player with Linux guests (listed above)

– Installed JDK 1.7

Results

The code required to provide the transfer is very short, once a con-
nection to the container is established, the SCP command which does
the actual transfer is sent over to be executed. The file transfer proved
to be successful and happened swiftly, as was expected. Using the cat
command for printing the file contents it was immediately clean that
the new file on (A) is indeed a copy of the original one from (B).

5.2 Docker update

In this thesis, I have implemented a new Docker command, update.
The commands checks (and pulls) newer versions of images installed
on the host. Such command was request several times on Docker’s
github [34] and since I found it not only to be a great way to get a
deeper understanding of Docker’s core, I have decided to come up
with an implementation.

The update command can be run from the command line, by
issuing docker run, or from Docker’s remote API’s endpoint “im-
ages/update”, by making a POST request. One additional flag is
supported, –dry-run or -d which when present, only causes the com-
mand to return whether the images on the host are up to date or not,
without pulling the newer versions.

44

5. IMPLEMENTATION

Developing Docker

Docker contribution workflow, which is in detail explained in the
official guide [35] , specifies the necessary tools, such as git, make and
docker. The guide covers every basic step from creating/claiming
an issue, though installing, compiling and testing up to making pull
requests. As a great communication tool and help for new Docker
developers an IRC channel #docker-dev is publicly available.

Except for the compilation time, which is mediocre (about half
a minute), development is quite fast, since it simply involves copy-
ing the new binary and restarting the docker service, which can be
all handled by an utility script. What is more complicated is testing,
since running the entire test suite can take several hours.

Docker’s code itself is mostly well structured and formatted, but
lacks enough comments. This is something that I feel should be im-
proved, since for example, it is often hard to tell a variable’s type,
considering Go’s dynamic type inference. What gives a very good
impression is Docker’s heavy error checking and frequent debug log-
ging. Another positive is the emphasis placed on project’s modular-
ity and loose coupling. I have also mentioned the tests, which are
present .

Our IDE choice was LiteIDE [36], a lightweight open source IDE
for Go. It is easy and intuitive to install and use, plus it offers a good
search mechanism. The not so outstanding features are code naviga-
tion, which seems to be working about half the time and code com-
pletion, which didn’t work in our installation at all.

Writing a custom Docker command

Implementing a custom docker command usually requires the fol-
lowing steps:

• Implement the server side function, which does the core part

• Create a REST endpoint which runs the server-side function on
the docker daemon and bind it to particular URL and HTTP
method

• Add the command itself, which parses the console input, cre-
ates a request on the REST endpoint and parses and prints the

45

5. IMPLEMENTATION

output

• Register the command in the command line interface

• Write the command help, specifying the usage and arguments

• Write unit tests for added functions, and an integration test for
the command

Summary

This command could be very beneficial for Docker to have as system
administrators will have a quick way of checking whether all of their
images are up to date. It would be also possible to build a notification
service, utilising the command, which could periodically check and
possibly pull updates for the images present in the system.

46

6 Conclusion

In my thesis, I have described both approaches to virtualization -
virtual machines and containers. In the case of virtual machines, the
principles were explored and various tools were described. It can be
stated that virtual machines have a long tradition, the technology is
widely used and mature and furthermore, the years of production
use have caused them to be thoroughly tested. Nevertheless, virtual
machines suffer from several drawbacks. They are often difficult to
set up and maintain, can take a lot of space on disc and even though
they are directly supported by the hardware, a performance hit still
occurs.

Container based virtualization works by sharing the operating
system’s kernel, eliminating these kind of problems. However it im-
portant to note, that containers are not able to fully replace virtual
machines yet. Running an entirely different guest operating system
is a frequently used feature of virtual machines, which the containers
don’t offer. Additionally, as the usage of containers spreads, security
bugs are being discovered in the underlying technologies, and even
if they are being fixed quickly, it will take some time before contain-
ers will become as much trusted and production tested as virtual
machines. Still, large companies have decided that containers are in-
deed what could dramatically improve performance and accessibil-
ity of their clouds and started adopting them.

Docker is a project which brings the containers closer to devel-
opers and system administrators. It comes with an easy to use in-
terface for container management and provides a healthy ecosystem
for sharing the containerized applications - images. Docker is on its
way to become a standard for handling containers, while introduc-
ing higher level tools for both applications and users. Rapidly evolv-
ing, Docker is quickly adding features, while trying to stay in contact
with its user base, in order to make sure containers will once earn the
same reputation as virtual machines. Moreover, dozens of projects
are being created on top of Docker, ranging from small extensions
to entire cloud operating systems. The following months and possi-
bly years will show, which ones will dominate the market and which
ones will fade into history.

47

6. CONCLUSION

The practical part of this thesis starts with demonstration of Docker’s
API and its public libraries, showing that interacting with Docker is
almost as easy for programs as it is for users. Writing a simple Java
application, which transferred a file using SCP was indeed a task,
which I’ve successfully managed to complete.

A new command, Docker update was the final focus of this the-
sis. This commands allows the Docker client to check whether the
local images are all up to date, while possibly updating them. Its
implementation served as an introduction to Docker’s internals and
its development process. The final code was then submitted in the
form of pull request directly to Docker’s github repository, where it
passed all the automated tests and is currently waiting for a decision
whether to be merged in Docker’s official codebase.

48

7 Appendix

7.1 Attached files

Files containing source code for both tasks from the implementa-
tion part are attached to the electronic version of this thesis. The
Docker Remote API demonstration can be found in the directory file-
copy_demo, which includes a pom.xml, containing the dependency
on docker-java and a src folder with the actual source code. The im-
plementation of Docker update command is located in docker_udpate,
which contains the modified source code of Docker 1.7. A readme_jurenka.txt
contains the relevant information, regarding the compilation and/or
running of this modified docker binary.

49

Bibliography

[1] Navin Sabharwal, Bibin W. Hands on Docker, 2015.

[2] Shrikrishna Holla. Orchestrating Docker, 2015.

[3] Gerald J. Popek and Robert P. Goldberg. Formal Requirements
for Virtualizable Third Generation Architectures, 1974.

[4] Intel® 64 and IA-32 Architectures Software Developer’s Manual
Volume 3B:System Programming Guide, Part 2, 2011.

[5] Secure Virtual Machine Architecture Reference Manual, 2005.

[6] http://www.xenproject.org/users/why-the-xen-project.html,
cit. 23.4.2015.

[7] http://en.wikipedia.org/wiki/Libvirt#/media/File:Libvirt_support.svg,
cit. 12.5.2015

[8] http://virt-manager.org/wp-content/uploads/2013/04/virt-
manager-vm-list.png, cit. 12.5.2015

[9] http://cockpit-project.org/images/screenshot-docker.png, cit.
12.5.2015

[10] http://infoslack.com/images/etcd-cluster.png, cit. 12.5.2015

[11] https://github.com/docker/libcontainer, cit. 17.3.2015.

[12] https://docs.docker.com/terms/images/docker-filesystems-
multilayer.png, cit. 10.5.2015

[13] http://lwn.net/Articles/531114/, cit. 10.1.2015.

[14] http://blog.docker.com/2014/10/docker-microsoft-partner-
distributed-applications/, cit. 11.1.2015

[15] http://techcrunch.com/2014/01/21/docker-raises-15m-for-
popular-open-source-platform-designed-for-developers-to-
build-apps-in-the-cloud/, cit. 12.1.2015.

50

BIBLIOGRAPHY

[16] http://venturebeat.com/2014/09/16/docker-funding/, cit.
12.1.2015.

[17] https://gigaom.com/2014/08/06/the-400-million-container-
company-docker-closes-in-on-funding-round-of-over-40-
million/, cit. 12.1.2015

[18] https://chocolatey.org/packages/docker

[19] https://github.com/docker-library/java/blob/master/openjdk-
8-jdk/Dockerfile, cit. 6.4.2015.

[20] https://registry.hub.docker.com/

[21] https://github.com/docker/machine/blob/master/ROADMAP.md

[22] https://github.com/kwk/docker-registry-frontend

[23] https://titanous.com/posts/docker-insecurity, cit. 21.4.2015.

[24] http://lwn.net/Articles/626665/, cit. 21.4.2015.

[25] Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio.
An Updated Performance Comparison of Virtual Machines and
Linux Containers, 2014.

[26] http://googlecloudplatform.blogspot.sk/2014/06/an-
update-on-container-support-on-google-cloud-platform.html,
10.6.2014

[27] https://gigaom.com/2014/08/18/google-wants-to-show-the-
world-how-sexy-cluster-management-really-is/, cit 24.4.2015

[28] https://mesosphere.com/blog/2015/04/23/apple-details-j-a-
r-v-i-s-the-mesos-framework-that-runs-siri/, cit 24.4.2015

[29] http://www.ubuntu.com/cloud/tools/lxd, cit 26.4.2015

[30] https://coreos.com/blog/rocket/, cit 26.4.2015

[31] https://github.com/docker/docker/commit/
0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5, cit 26.4.2015

51

https://github.com/docker/docker/commit/0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5
https://github.com/docker/docker/commit/0db56e6c519b19ec16c6fbd12e3cee7dfa6018c5

BIBLIOGRAPHY

[32] https://github.com/appc/spec/blob/master/SPEC.md, cit
26.4.2015

[33] https://github.com/docker-java/docker-java

[34] https://github.com/docker/docker/issues/4239

[35] https://docs.docker.com/project/who-written-for/

[36] https://github.com/visualfc/liteide

52

	Introduction
	Virtualization
	 Virtualization use cases
	 Virtual machine based virtualization
	 Virtual machine monitors
	 Software based virtualization
	 Hardware assisted virtualization
	 VirtualBox
	 VMWare Player
	 Other tools

	 Container based virtualization
	 Chroot and jail
	 Namespaces
	 Control groups
	 Container based virtualization tools
	 Comparison with virtual machines

	Docker
	 History of Docker
	 Docker daemon
	 Libcontainer
	 Layering filesystem in Docker
	 Security
	 Performance
	 Future

	Using Docker
	 Installing Docker
	 Docker basics
	 Docker containers
	 Docker images
	 Docker registry
	 Docker Hub

	 Docker Orchestration Tools
	 Docker Swarm
	 Docker Machine
	 Docker Compose

	 Family of Docker APIs
	 Docker Remote API

	 Docker vs other container technologies

	Implementation
	 Using Docker Remote API
	 Docker update

	Conclusion
	Appendix
	 Attached files

