
Chapter 10

The Derivation of
the Planck Formula

Topics

The Planck formula for black-body radiation. Revision of waves in a box. Radiation
in thermal equilibrium. The equipartition theorem and the ultraviolet catastrophe.
The photoelectric effect. The wave-particle duality. Quantisation of radiation and
the derivation of the Planck spectrum. The Stefan-Boltzmann law.

10.1 Introduction

In the first lecture, we stated that the energy den-
sity of radiation per unit frequency interval u(ν)
for black-body radiation is described by the Planck
formula (Figure 10.1),

u(ν) dν =
8πhν3

c3

1
(ehν/kT − 1)

dν (10.1)

where Planck’s constant, h = 6.626 × 10−34 J s.
In this lecture, we demonstrate why quantum con-
cepts are necessary to account for this formula. The
programme to derive this formula is as follows.

• First, we consider the properties of waves in
a box and work out an expression for the ra-
diation spectrum in thermal equilibrium at
temperature T .

Figure 10.1. Spectrum of black body radiation

f(x) dx ∝ x3

ex − 1
dx

in terms of the dimensionless frequency x.
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• Application of the law of equipartition of en-
ergy leads to the ultraviolet catastrophe, which
shows that something is seriously wrong with
the classical argument.

• Then, we introduce Einstein’s deduction that
light has to be quantised in order to account
for the observed features of the photoelectric
effect.

• Finally, we work out the mean energy per
mode of the radiation in the box assuming the
radiation is quantised. This leads to Planck’s
radiation formula.

This calculation indicates clearly the necessity of
introducing the concepts of quantisation and quanta
into physics.

10.2 Waves in a Box - Revision

Let us revise the expression for an electromagnetic (or
light) wave travelling at the speed of light in some ar-
bitary direction, say, in the direction of the vector r. If
the wave has wavelength λ, at some instant the ampli-
tude of the wave in the r-direction is

A(r) = A0 sin
2πr

λ

(see Figure 10.2). In terms of the wave vector k, we can
Figure 10.2. The properties of sine and

cosine waves.
write

A(r) = A0 sin(k · r) = A0 sin kr,

where |k| = 2π/λ. Wave vectors will prove to be very
important quantities in what follows.

The wave travels at the speed of light c in the r-direction
and so, after time t, the whole wave pattern is shifted a
distance ct in the positive r-direction and the pattern is
A0 sin kr′, where we have shifted the origin to the point
ct along the r-axis such that r = r′ + ct. Thus, the
expression for the wave after time t is

A(r, t) = A0 sin kr′ = A0 sin(kr − kct).

But, if we observe the wave at a fixed value of r, we ob-
serve the amplitude to oscillate at frequency ν. There-
fore, the time dependence of the wave amplitude is sin(2πt/T )
where T = ν−1 is the period of oscillation of the wave.
Therefore, the time dependence of the wave at any point
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is sin ωt, where ω = 2πν is the angular frequency of the
wave. Therefore, the expression for the wave is

A(r, t) = A0 sin(kr − ωt),

and the speed of the wave is c = ω/k.

10.3 Electromagnetic Modes in a Box –
More Revision

Consider a cubical box of side L and imagine waves
bouncing back and forth inside it. The box has fixed,
rigid, perfectly conducting walls. Therefore, the electric
field of the electromagnetic wave must be zero at the
walls of the box and so we can only fit waves into the
box which are multiples of half a wavelength. The first
few examples are shown in Figure 10.3.

Figure 10.3. Waves which can be fitted into a
box with perfectly conducting walls.

In the x-direction, the wavelengths of the waves which
can be fitted into the box are those for which

lλx

2
= L

where l takes any positive integral value, 1, 2, 3, . . . .
Similarly, for the y and z directions,

mλy

2
= L and

nλz

2
= L,

where m and n are also positive integers.

The expression for the waves which fit in the box in the
x-direction is

A(x) = A0 sin kxx

Now, kx = 2π/λx where kx is the component of the
wave-vector of the mode of oscillation in the x-direction.
Hence, the values of kx which fit into the box are those
for which λx = 2L/l and so

kx =
2πl

2L
=

πl

L
,

where l takes the values l = 1, 2, 3 . . . . Similar results
are found in the y and z directions:

ky =
πm

L
, kz =

πn

L
.

Let us now plot a three-dimensional diagram with axes
kx, ky and kz showing the allowed values of kx, ky and
kz. These form a regular cubical array of points, each
of them defined by the three integers, l, m, n (Figure
10.4). This is exactly the same as the velocity, or mo-
mentum, space which we introduced for particles.
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The waves can oscillate in three dimensions but the com-
ponents of their k-vectors, kx, ky and kz, must be such
that they are associated with one of the points of the
lattice in k-space. A wave oscillating in three dimen-
sions with any of the allowed values of l, m, n satisfies
the boundary conditions and so every point in the lat-
tice represents a possible mode of oscillation of the waves
within the box, consistent with the boundary conditions.

Figure 10.4. Illustrating the values of l and
m which result in components of wavevectors
which can fit in the box.

Thus, in three-dimensions, the modes of oscillation can
be written

A(x, y, z) = A0 sin(kxx) sin(kyy) sin(kzz) (10.2)

To find the relation between kx, ky, kz and the angular
frequency ω of the mode, we insert this trial solution
into the three-dimensional wave equation

∂2A

∂x2
+

∂2A

∂y2
+

∂2A

∂z2
=

1
c2

∂2A

∂t2
. (10.3)

The time dependence of the wave is also sinusoidal, A =
A0 sin ωt and so we can find the dispersion relation for
the waves, that is, the relation between ω and kx, ky, kz,
by substituting the trial solution into (10.3);

|k|2 = (k2
x + k2

y + k2
z) =

ω2

c2
.

where k is the three-dimensional wave-vector. Now,

k2 = k2
x + k2

y + k2
z =

π2

L2
(l2 + m2 + n2),

and so

ω2

c2
=

π2

L2
(l2 + m2 + n2) =

π2p2

L2
, (10.4)

where p2 = l2 + m2 + n2.

10.4 Counting the Modes

We now return to statistical physics. We need the
number of modes of oscillation in the frequency in-
terval ν to ν + dν. This is now straightforward,
since we need only count up the number of lat-
tice points in the interval of k-space k to k + dk
corresponding to ν to ν + dν. We carried out a
similar calculation in converting from dvx dvy dvz

to 4πv2 dv.
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In Figure 10.4, the number density of lattice points
is one per unit volume of (l, m, n) space. We are
only interested in positive values of l, m and n and
so we need only consider one-eighth of the sphere of
radius p. The volume of a spherical shell of radius
p and thickness dp is 4πp2 dp and so the number of
modes in the octant is

dN(p) = N(p) dp =
(

1
8

)
4πp2 dp.

Since k = πp/L and dk = π dp/L, we find

dN(p) =
L3

2π2
k2 dk.

But, L3 = V is the volume of the box and k =
2πν/c. Therefore, we can rewrite the expression

dN(p) =
V

2π2
k2 dk =

V

2π2

8π3ν2

c3
dν =

4πν2V

c3
dν

Finally, for electromagnetic waves, we are always

Note on the Polarisation of Electro-
magnetic Waves

Illustrating the electric and magnetic
fields of an electromagnetic wave. The E
and B fields of the wave are perpendicular
to each other and to the direction of prop-
agation of the wave. There is an indepen-
dent mode of propagation in which E and
B are rotated through 90◦ with respect to
the direction of propagation C. Any po-
larisation of the wave can be formed by
the sum of these two independent modes
of propagation.

allowed two independent modes, or polarisations,
per state and so we have to multiply the result by
two. Because of the nature of light waves, there are
two independent states associated with each lattice
point (l,m, n). The final result is that the number
of modes of oscillation in the frequency interval ν
to ν + dν is

dN =
8πν2V

c3
dν

Thus, per unit volume, the number of states is

dN =
8πν2

c3
dν (10.5)

This is a really important equation.

10.5 The Average Energy per Mode and
the Ultraviolet Catastrophe

We now introduce the idea that the waves are in
thermodynamic equilibrium at some temperature
T . We showed that, in thermal equilibrium, we
award 1

2kT of energy to each degree of freedom.
This is because, if we wait long enough, there are
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processes which enable energy to be exchanged be-
tween the apparently independent modes of oscil-
lation. Thus, if we wait long enough, each mode of
oscillation will attain the same average energy E,
when the system is in thermodynamic equilibrium.

Therefore, the energy density of radiation per unit
frequency interval per unit volume is

du = u(ν) dν =
8πν2

c3
E dν,

u(ν) =
8πν2

c3
E.

Now, we established in Section 8.2 that the average
energy of a harmonic oscillator in thermal equilib-
rium is E = kT and so the spectrum of black-body
radiation is expected to be

u(ν) =
8πν2

c3
E =

8πν2kT

c3
. (10.6) The Rayleigh-Jeans Law

u(ν) =
8πν2kT

c3
.

This result is very bad news – the energy density
of radiation diverges at high frequencies. Einstein
expressed this result forcibly –

∫ ∞

0
u(ν) dν =

∫ ∞

0

8πν2kT

c3
dν →∞.

The Ultraviolet Catastrophe
According to classical physics, the energy
density of black-body radiation diverges at
high frequencies

∫ ∞

0

8πν2kT

c3
dν →∞.

This is the famous result known as the ultraviolet
catastrophe – the total energy in black-body ra-
diation diverges. This expression for the spectral
energy distribution of radiation is known as the
Rayleigh-Jeans Law and, although it diverges at
high frequencies, it is in excellent agreement with
the measured spectrum at low frequencies and high
temperatures. This result was derived by Lord
Rayleigh in 1900. This was one of the key prob-
lems of classical physics – what has gone wrong?

10.6 The Photoelectric Effect – Revision

The solution was contained in Einstein’s revolutionary
paper of 1905 in which he proposed that, under certain
circumstances, light should be regarded as consisting of
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a flux of particles, what we now call photons, each with
energy hν, where h is Planck’s constant. He discovered
this result from a remarkable analysis of the thermody-
namics of radiation in the Wien region of the black-body
spectrum. Among the consequences of this proposal was
an explanation for various puzzling features of the pho-
toelectric effect.

Figure 10.5. Illustrating the apparatus
needed to study the energies of electrons

emitted in the photoelectric effect.

If optical or ultraviolet radiation is incident upon a sur-
face, electrons are ejected, provided the frequency of the
radiation is high enough. When monochromatic light,
that is, light of a single frequency, is shone upon the
cathode of a discharge tube, it was found that a current
flowed between the cathode and the anode, associated
with the drift of the ejected electrons to the anode. In
the arrangement shown in Figure 10.5, the electrostatic
potential between the anode and cathode could be made
positive or negative. When it is positive, the electrons
are accelerated while if it is negative the electrons are
decelerated and the current flow reduced. At a suffi-
cently negative voltage V0, the current goes to zero – V0

is called the stopping potential (Figure 10.6).

One of the puzzling aspects of the photoelectric effect
was that, no matter what the intensity of the incident
monochromatic radiation, the stopping voltage was al-
ways the same. We can rephrase this result in the follow-
ing way. The kinetic energy, which the electrons acquire
on being ejected from the surface, has a maximum value
which is independent of the intensity of the radiation.

Figure 10.6. Illustrating the determination of
the stopping voltage for the photoelectric

effect. Notice that, although the intensity of
radiation is greater in experiment (b) than in
(a), the stopping voltage V0 is unchanged.

Einstein could account for this result by adopting his
light-quantum hypothesis. Suppose a certain energy W0

is required to remove an electron from the surface of the
material – W0 is known as its work function. Then,
by conservation of energy, any excess energy once the
electron is liberated appears as its kinetic energy 1

2mev
2,

that is,
hν = W0 + 1

2mev
2

But the maximum kinetic energy of the ejected electrons
can be found from the stopping voltage V0 since the
current ceases to flow when 1

2mev
2 = eV0. Einstein

therefore predicted the relation

hν = W0 + eV0

Hence, if we plot V0 against ν, we should obtain a linear
relation

ν =
e

h
V0 +

W0

h

According to Einstein’s picture, increasing the intensity
of the light increases the number of electrons of energy
1
2mev

2 but not their individual energies. When Einstein
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derived this result, the dependence of V0 upon ν was not
known.

Figure 10.7. The apparatus used to
demonstrate the frequency dependence of the

photoelectric effect.

Let us demonstrate the photoelectric effect experimen-
tally using the apparatus shown in the Figure 10.7. The

Table 10.1. The Photoelectric Effect
Line Frequency Stopping Voltage

×1014 Hz Volts
UV2 8.22 1.807
UV1 7.41 1.546
Blue 6.88 1.359
Green 5.49 0.738
Yellow 5.19 0.624

source of light is a mercury lamp – the mercury vapour
emits five strong emission lines which span the frequency
range from ultraviolet to yellow wavelengths, as listed
in Table 10.1. The apparatus is arranged so that these
lines are dispersed and a photoelectric detector used to
measure the energies of the liberated electrons. Table
10.1 shows the results of a typical experiment, which are
plotted in Figure 10.8. The slope of the line enables the
value of h/e to be determined. In this experiment, the
line is described by

V0 =
2

4.9× 1014
ν + constant,

h

e
= 0.408× 10−14 J s C−1.

The actual value of h/e is 0.414× 10−14 J s C−1.

It took many years before the correctness of Einstein’s
theory was established. The definitive results concern-
ing the photoelectric effect were published by Millikan
in 1916.

This was the first example of the fundamental phenomenon
in physics known as the wave-particle duality. It is the
statement that, in physics, waves have particle proper-
ties and, as we will show in Chapter 11, particles have
wave properties. This lies at the very heart of quan-
tum mechanics and leads to all sorts of non-intuitive
phenomena.

Historical Note Here are Millikan’s words from 1916.

‘We are confronted, however, by the astonishing situa-
tion that these facts were correctly and exactly predicted
9 years ago by a form of quantum theory which has now
generally been abandoned.’

Figure 10.8. The Frequency-Stopping
Voltage Relation (linear scales)
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He also refers to Einstein’s

‘bold, not to say reckless hypothesis of an electromag-
netic light corpuscle of energy hν which flies in the face
of the thoroughly established facts of interference.’
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10.7 Derivation of Planck’s law

The photoelectric effect demonstrates that light waves
have particle properties and that the light quanta,
or photons, of a particular frequency ν each have
energy hν. We need to reconcile this picture with
the classical picture of electromagnetic waves in a
box. In the classical picture, the energy associated
with the waves is stored in the oscillating electric
and magnetic fields. We found it necessary to im-
pose the constraint that only certain modes are per-
mitted by the boundary conditions – the waves are
constrained to fit into the box with whole numbers
of half wavelengths in the x, y, z directions.

Now we have a further constraint. The quantisa-
tion of electromagnetic radiation means that the
energy of a particular mode of frequency ν cannot
have any arbitrary value but only those energies
which are multiples of hν, in other words the en-
ergy of the mode is E(ν) = nhν, where we associate
n photons with this mode.

We now consider all the modes (and photons) to be
in thermal equilibrium at temperature T . In order
to establish equilibrium, there must be ways of ex-
changing energy between the modes (and photons)
and this can occur through interactions with any
particles or oscillators within the volume or with
the walls of the enclosure.

We now use the Boltzmann distribution to deter-
mine the expected occupancy of the modes in ther-
mal equilibrium. The probability that a single mode
has energy En = nhν is given by the usual Boltz-
mann factor

p(n) =
exp (−En/kT )
∞∑

n=0

exp (−En/kT )

, (10.7)

where the denominator ensures that the total prob-
ability is unity, the usual normalisation procedure.
In the language of photons, this is the probability
that the state contains n photons of frequency ν.

The mean energy of the mode of frequency ν is
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therefore

Eν =
∞∑

n=0

En p(n) =

∞∑

n=0

En exp (−En/kT )

∞∑

n=0

exp (−En/kT )

=

∞∑

n=0

nhν exp (−nhν/kT )

∞∑

n=0

exp (−nhν/kT )

(10.8)

To simplify the calculation, let us substitute x =
exp(−hν/kT ). Then (10.8) becomes

Eν = hν

∞∑

n=0

nxn

∞∑

n=0

xn

= hν
(x + 2x2 + 3x3 + . . . )

(1 + x + x2 + . . . )
,

= hν x
(1 + 2x + 3x2 + . . . )
(1 + x + x2 + . . . )

.

(10.9)

Now, we remember the following series expansions: Note (10.11) can be found from (10.10)
by differentiation with respect to x.1

(1− x)
= 1 + x + x2 + x3 + . . . (10.10)

1
(1− x)2

= 1 + 2x + 3x2 + . . . (10.11)

Hence, the mean energy of the mode is

E =
hν x

1− x
=

hν

x−1 − 1
=

hν

ehν/kT − 1
. (10.12)

Average energy of a mode of fre-
quency ν according to quantum
theory

E =
hν

ehν/kT − 1
.This is the result we have been seeking. To find

the classical limit, we allow the energy quanta hν
to tend to zero. Expanding ehν/kT − 1 for small
values of hν/kT ,

ehν/kT − 1 = 1 +
hν

kT
+

1
2!

(
hν

kT

)2

+ · · · − 1.

Thus, for small values of hν/kT ,

ehν/kT − 1 =
hν

kT
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and so

E =
hν

ehν/kT − 1
=

hν

ε/kT
= kT

Thus, if we take the classical limit, we recover ex-
actly the expression for the average energy of a har-
monic oscillator in thermal equilibrium, E = kT .

We can now complete the determination of Planck’s
radiation formula. We have already shown that
the number of modes in the frequency interval ν to
ν+dν is (8πν2/c3) dν per unit volume. The energy

The Planck distribution in terms of
the energy density of radiation per
unit frequency interval

u(ν) dν =
8πhν3

c3

1
exp (hν/kT )− 1

dν
density of radiation in this frequency range is

u(ν) dν =
8πν2

c3
Eν dν

=
8πhν3

c3

1
exp (hν/kT )− 1

dν. (10.13)

This is the Planck distribution function.

10.8 The Stefan-Boltzmann Law

Let us demonstrate experimentally how the total
intensity of radiation depends upon temperature.
By the total intensity, we mean the total amount
of energy emitted by the hot body summing over
all frequencies.

This experiment was first carried out by John Tyn-
dell at the Royal Institution in London in 1870 and
repeated more precisely in Vienna by Josef Stefan
who showed empirically that the intensity of radi-
ation was proportional to the fourth power of the
temperature

I ∝ T 4,

where I is the radiant energy emitted per second
per unit area by the hot body.

Figure 10.9. The Tungsten Light Bulb
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We can demonstrate this law by placing a bolome-
ter, which is a detector which measures the to-
tal amount of energy incident upon it, close to a
light bulb (Figure 10.9). The temperature of the
light bulb filament can be measured because of the
strong correlation between its resistance and tem-
perature (Table 10.2).
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The incident radiation heats a semiconducting diode
and the rate of absorption of energy is measured
by the voltage output of the bolometer. Table 10.3

Table 10.2
Voltage Current Resistance R/R0 Temp.

V I R = V/I (K)
- - 0.36 1 293

3.0 1.06 2.83 7.92 1622
6.0 1.45 4.14 11.59 2265
8.0 1.68 4.76 13.33 2572
10.0 1.88 5.32 14.89 2846
12.0 2.05 5.85 16.39 3109

shows a set of data which were obtained in an ear-
lier experiment. These data are plotted in the log-
log plot in Figure 10.10. It can be seen that these
data are well described by the relation I ∝ T 4.

Table 10.3
Temperature Intensity of

K radiation (V)
293
1622 2.3
2265 8.8
2572 15.6
2846 23.9
3109 32.8

Let us compare this law with the prediction of the
quantum theory of the black-body spectrum by in-
tegrating the Planck spectrum over all wavelengths
to find the dependence of the total energy density
of radiation u upon temperature.

u =
∫ ∞

0
u(ν) dν

=
8πh

c3

∫ ∞

0

ν3 dν

ehν/kT − 1
.

Now, change variables to x = hν/kT so that dx =

Figure 10.10. The Intensity–Temperature
Relation
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(h/kT ) dν. Then,

u =
8πh

c3

(
kT

h

)4 ∫ ∞

0

x3 dx

ex − 1
.

The integral is a standard integral, the value of
which is ∫ ∞

0

x3 dx

ex − 1
=

π4

15
.

Therefore,

u =
(

8π5k4

15c3h3

)
T 4 = aT 4.

We have derived the Stefan-Boltzmann law for the
energy density of black-body radiation. Putting in
the constants, we find

a = 7.566× 10−16 J m−3 K−4.

We can now relate this energy density to the energy
emitted per second from the surface of a black body
maintained at temperature T . Because the enclo-
sure is in thermal equilibrium, we can use the re-
lations derived from kinetic theory to work out the
rate of arrival of photons per unit area. The flux of
photons is 1

4Nv = 1
4Nc, since all the photons travel

at the speed of light, where N is their number den-
sity. Therefore, the rate at which energy arrives at
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the walls per second, and consequently the rate at
which the energy must be re-radiated from them,
is 1

4Nhνc = 1
4uc since u = Nhν. Therefore,

Two forms of the Stefan-Boltzmann
Law
In terms of the energy density of black-
body radiation

u = aT 4 =
(

8π5k4

15c3h3

)
T 4,

where a = 7.566× 10−16 J m−3 K−4.
In terms of the energy emitted per unit
surface area of a black-body

I = σT 4 =
(

2π5k4

15c2h3

)
T 4

where σ = 5.67× 10−8 W m−2 K−4.

I = 1
4uc =

ac

4
T 4 = σT 4 =

(
2π5k4

15c2h3

)
T 4

This provides a derivation of the value of the Stefan-
Boltzmann constant in terms of fundamental con-
stants

σ =
ac

4
=

(
2π5k4

15c2h3

)
= 5.67× 10−8 W m−2 K−4

10.9 Summary

We have made enormous progress. We have intro-
duced quantisation, quanta and the first example
of the wave-particle duality. The key idea is that
we cannot understand the form of the black-body
spectrum without introducing the idea that light
consists of energy packets, photons, with energies
E = hν.
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Non-examinable optional extra

Since the energy of each photon is hν, the result

E =
hν

ehν/kT − 1

determines the average number of photons in a single
mode of frequency ν in thermal equilibrium

nν =
1

exp (hν/kT )− 1
.

This is called the photon occupation number in ther-
mal equilibrium. We see that at high frequencies and
low temperatures, hν/kT À 1, the occupation num-
ber is exp (−hν/kT ), which is just the standard Boltz-
mann factor. At low frequencies and high temperatures,
however, the occupation number becomes kT/hν. Evi-
dently, there is much more to photon statistics than has
been apparent from our elementary treatment.

Let us reorganise the expression for the number den-
sity of photons of different frequencies in the light of
our considerations of the form of the Boltzmann distri-
bution. We recall that the distribution has two parts,
the Boltzmann factor and the degeneracy of the energy
state. Let us rewrite the Planck distribution in terms of
the number density of photons in the frequency interval
dν.

N(ν) dν =
u(ν) dν

hν
=

8πν2 dν

c3

1
ehν/kT − 1

.

Now, multiply above and below by h3:

N(ν) dν =
8π

h3

(
hν

c

)2

d
(

hν

c

)
1

ehν/kT − 1
,

= 2× 4πp2 dp

h3
× 1

ehν/kT − 1
.

where p = hν/c is the momentum of the photon. This
is a deep result. The term 4πp2 dp is the differential
volume of momentum space for the photons which have
energies in the range hν to h(ν + dν). The factor two
corresponds to the two polarisation states of the photon
(or electromagnetic wave). The h3 is the elementary
volume of phase space and so the term 4πp2 dp/h3 tells
us how many states there are available in the frequency
interval dν. The final term is the photon occupation
number which we derived above.


